Electromagnetism for Signal Processing, Spectroscopy and Contemporary Computing


Book Description

This comprehensive textbook will help readers to acquire a thorough understanding of the fundamentals of electromagnetism and its applications in various areas including spectroscopy, signal processing and contemporary computation. The text introduces the principles and applications of electricity, magnetism, and electromagnetic theory, which serve as foundations for communication systems, spectroscopy, and modern computing. It is followed by a discussion of the digital systems and their importance in computing, differences between digital signal transmission and wireless media, visualization techniques and useful simulation and computational techniques, together with advances in quantum computing. Aimed at senior undergraduate and graduate students in the fields of physics, electrical engineering, electronics and communication engineering, this textbook: Provides fundamentals of electromagnetism and its applications in a single volume. Discusses digital signal processing and wireless communication in depth. Covers advanced applications of electromagnetism in communication, spectroscopy, and computing. Discusses computer modeling & simulation, artificial intelligence, and quantum computing.







Which Degree in Britain


Book Description

A comprehensive guide to full-time degree courses, institutions and towns in Britain.




Convex Optimization for Signal Processing and Communications


Book Description

Convex Optimization for Signal Processing and Communications: From Fundamentals to Applications provides fundamental background knowledge of convex optimization, while striking a balance between mathematical theory and applications in signal processing and communications. In addition to comprehensive proofs and perspective interpretations for core convex optimization theory, this book also provides many insightful figures, remarks, illustrative examples, and guided journeys from theory to cutting-edge research explorations, for efficient and in-depth learning, especially for engineering students and professionals. With the powerful convex optimization theory and tools, this book provides you with a new degree of freedom and the capability of solving challenging real-world scientific and engineering problems.




Real-time Digital Signal Processing


Book Description




Fundamentals of Signal Processing in Generalized Metric Spaces


Book Description

Exploring the interrelations between generalized metric spaces, lattice-ordered groups, and order statistics, the book contains a new algebraic approach to Signal Processing Theory. It describes mathematical concepts and results important in the development, analysis, and optimization of signal processing algorithms intended for various applications. The book offers a solution of large-scale Signal Processing Theory problems of increasing both signal processing efficiency under prior uncertainty conditions and signal processing rate that is provided by multiplication-free signal processing algorithms based on lattice-ordered group operations. From simple basic relationships to computer simulation, the text covers a wide range of new mathematical techniques essential for understanding the proposed signal processing algorithms developed for solving the following problems: signal parameter and spectral estimation, signal filtering, detection, classification, and resolution; array signal processing; demultiplexing and demodulation in multi-channel communication systems and multi-station networks; wavelet analysis of 1D/ 2D signals. Along with discussing mathematical aspects, each chapter presents examples illustrating operation of signal processing algorithms developed for various applications. The book helps readers understand relations between known classic and obtained results as well as recent research trends in Signal Processing Theory and its applications, providing all necessary mathematical background concerning lattice-ordered groups to prepare readers for independent work in the marked directions including more advanced research and development.




Stream Processing with Apache Flink


Book Description

Get started with Apache Flink, the open source framework that powers some of the world’s largest stream processing applications. With this practical book, you’ll explore the fundamental concepts of parallel stream processing and discover how this technology differs from traditional batch data processing. Longtime Apache Flink committers Fabian Hueske and Vasia Kalavri show you how to implement scalable streaming applications with Flink’s DataStream API and continuously run and maintain these applications in operational environments. Stream processing is ideal for many use cases, including low-latency ETL, streaming analytics, and real-time dashboards as well as fraud detection, anomaly detection, and alerting. You can process continuous data of any kind, including user interactions, financial transactions, and IoT data, as soon as you generate them. Learn concepts and challenges of distributed stateful stream processing Explore Flink’s system architecture, including its event-time processing mode and fault-tolerance model Understand the fundamentals and building blocks of the DataStream API, including its time-based and statefuloperators Read data from and write data to external systems with exactly-once consistency Deploy and configure Flink clusters Operate continuously running streaming applications




Fundamentals of Signal Enhancement and Array Signal Processing


Book Description

A comprehensive guide to the theory and practice of signal enhancement and array signal processing, including matlab codes, exercises and instructor and solution manuals Systematically introduces the fundamental principles, theory and applications of signal enhancement and array signal processing in an accessible manner Offers an updated and relevant treatment of array signal processing with rigor and concision Features a companion website that includes presentation files with lecture notes, homework exercises, course projects, solution manuals, instructor manuals, and Matlab codes for the examples in the book




Waves: A Very Short Introduction


Book Description

We live in a world of waves. The Earth shakes to its foundations, the seas and oceans tremble incessantly, sounds reverberate through land, sea, and air. Beneath the skin, our brains and bodies are awash with waves of their own, and the Universe is filled by a vast spectrum of electromagnetic radiation, of which visible light is the narrowest sliver. Casting the net even wider, there are mechanical waves, quantum wave phenomena, and the now clearly detected gravitational waves. Look closer and deeper and more kinds of waves appear, down to the most fundamental level of reality. This Very Short Introduction looks at all the main kinds of wave, their sources, effects, and uses. Mike Goldsmith discusses how wave motion results in a range of phenomena, from reflection, diffraction, interference, and polarization in the case of light waves to beats and echoes for sound. All waves, however different, share many of the same features, and, as Goldsmith shows, for all their complexities many of their behaviours are fundamentally simple. ABOUT THE SERIES: The Very Short Introductions series from Oxford University Press contains hundreds of titles in almost every subject area. These pocket-sized books are the perfect way to get ahead in a new subject quickly. Our expert authors combine facts, analysis, perspective, new ideas, and enthusiasm to make interesting and challenging topics highly readable.




Handbook of Modern Sensors


Book Description

Seven years have passed since the publication of the previous edition of this book. During that time, sensor technologies have made a remarkable leap forward. The sensitivity of the sensors became higher, the dimensions became smaller, the sel- tivity became better, and the prices became lower. What have not changed are the fundamental principles of the sensor design. They are still governed by the laws of Nature. Arguably one of the greatest geniuses who ever lived, Leonardo Da Vinci, had his own peculiar way of praying. He was saying, “Oh Lord, thanks for Thou do not violate your own laws. ” It is comforting indeed that the laws of Nature do not change as time goes by; it is just our appreciation of them that is being re?ned. Thus, this new edition examines the same good old laws of Nature that are employed in the designs of various sensors. This has not changed much since the previous edition. Yet, the sections that describe the practical designs are revised substantially. Recent ideas and developments have been added, and less important and nonessential designs were dropped. Probably the most dramatic recent progress in the sensor technologies relates to wide use of MEMS and MEOMS (micro-electro-mechanical systems and micro-electro-opto-mechanical systems). These are examined in this new edition with greater detail. This book is about devices commonly called sensors. The invention of a - croprocessor has brought highly sophisticated instruments into our everyday lives.