Electron Microbeam Analysis


Book Description

This supplement of Mikrochimica Acta contains selected papers from the Second Workshop of the European Microbeam Analysis Society (EMAS) "Modern Developments and Applications in Microbeam Analysis", on which took place in May 1991 in Dubrovnik (Yugoslavia). EMAS was founded in 1987 by members from almost all European countries, in order to stimulate research, applications and development of all forms of microbeam methods. One of the most important activities EMAS is the organisation of biannual workshops for demonstrating the current status and developing trends of microbeam methods. For this meeting, EMAS chose to highlight the following topics: electron-beam microanalysis (EPMA) of thin films and quantitative analysis of ultra-light elements, Auger electron spectroscopy (AES), electron energy loss spec trometry (EELS), high-resolution transmission electron microscopy (HRTEM), quantitative analysis of biological samples and standard-less electron-beam microanalysis. Seven introductory lectures and almost seventy poster presentations were given by speakers from twelve European and two non-European (U.S.A. and Argentina) countries were made. One cannot assume that all fields of research in Europe were duly represented, but a definite trend is discernible. EPMA with wavelength-dispersive spectrometry (WDS) or energy-dispersive spectrometry (EDS) is the method with by far the widest range of applications, followed by TEM with EELS and then AES. There are also interesting suggestions for the further development of new appa ratus with new fields of application. Applications are heavily biased towards materials science (thin films in microelectronics and semicon ductors), ceramics and metallurgy, followed by analysis of biological and mineral samples.




Electron Microprobe Analysis and Scanning Electron Microscopy in Geology


Book Description

Originally published in 2005, this book covers the closely related techniques of electron microprobe analysis (EMPA) and scanning electron microscopy (SEM) specifically from a geological viewpoint. Topics discussed include: principles of electron-target interactions, electron beam instrumentation, X-ray spectrometry, general principles of SEM image formation, production of X-ray 'maps' showing elemental distributions, procedures for qualitative and quantitative X-ray analysis (both energy-dispersive and wavelength-dispersive), the use of both 'true' electron microprobes and SEMs fitted with X-ray spectrometers, and practical matters such as sample preparation and treatment of results. Throughout, there is an emphasis on geological aspects not mentioned in similar books aimed at a more general readership. The book avoids unnecessary technical detail in order to be easily accessible, and forms a comprehensive text on EMPA and SEM for geological postgraduate and postdoctoral researchers, as well as those working in industrial laboratories.




Electron Probe Quantitation


Book Description

In 1968, the National Bureau of Standards (NBS) published Special Publication 298 "Quantitative Electron Probe Microanalysis," which contained proceedings of a seminar held on the subject at NBS in the summer of 1967. This publication received wide interest that continued through the years far beyond expectations. The present volume, also the result of a gathering of international experts, in 1988, at NBS (now the National Institute of Standards and Technology, NIST), is intended to fulfill the same purpose. After years of substantial agreement on the procedures of analysis and data evaluation, several sharply differentiated approaches have developed. These are described in this publi cation with all the details required for practical application. Neither the editors nor NIST wish to endorse any single approach. Rather, we hope that their exposition will stimulate the dialogue which is a prerequisite for technical progress. Additionally, it is expected that those active in research in electron probe microanalysis will appreciate more clearly the areas in which further investigations are warranted.




Scanning Transmission Electron Microscopy


Book Description

Scanning transmission electron microscopy has become a mainstream technique for imaging and analysis at atomic resolution and sensitivity, and the authors of this book are widely credited with bringing the field to its present popularity. Scanning Transmission Electron Microscopy(STEM): Imaging and Analysis will provide a comprehensive explanation of the theory and practice of STEM from introductory to advanced levels, covering the instrument, image formation and scattering theory, and definition and measurement of resolution for both imaging and analysis. The authors will present examples of the use of combined imaging and spectroscopy for solving materials problems in a variety of fields, including condensed matter physics, materials science, catalysis, biology, and nanoscience. Therefore this will be a comprehensive reference for those working in applied fields wishing to use the technique, for graduate students learning microscopy for the first time, and for specialists in other fields of microscopy.




Quantitative Microbeam Analysis


Book Description

Quantitative Microbeam Analysis provides a comprehensive introduction to the field of quantitative microbeam analysis (MQA). MQA is a technique used to analyze subatomic quantities of materials blasted from a surface by a laser or particle beam, providing information on the structure and composition of the material. Contributed to by international experts, the book is unique in the breadth of microbeam analytical techniques covered. For each technique, it develops the theoretical background, discusses practical details relating to choice of equipment, and describes the current advances. The book highlights developments relating to Auger electron spectroscopy in scanning electron microscopes and transmission electron microscopes and advances in surface analytical imaging and accelerated ion beam-surface interactions.




Physical Principles of Electron Microscopy


Book Description

Scanning and stationary-beam electron microscopes are indispensable tools for both research and routine evaluation in materials science, the semiconductor industry, nanotechnology and the biological, forensic, and medical sciences. This book introduces current theory and practice of electron microscopy, primarily for undergraduates who need to understand how the principles of physics apply in an area of technology that has contributed greatly to our understanding of life processes and "inner space." Physical Principles of Electron Microscopy will appeal to technologists who use electron microscopes and to graduate students, university teachers and researchers who need a concise reference on the basic principles of microscopy.




Quantitative Electron-probe Microanalysis


Book Description

Examines practical and theoretical aspects of the techniques of electron-probe microanalysis, providing material both for practical microanalysts interested in problems and procedures and for researchers who require greater understanding of the principles and developments in correction models.




Principles of Analytical Electron Microscopy


Book Description

Since the publication in 1979 of Introduction to Analytical Electron Microscopy (ed. J. J. Hren, J. I. Goldstein, and D. C. Joy; Plenum Press), analytical electron microscopy has continued to evolve and mature both as a topic for fundamental scientific investigation and as a tool for inorganic and organic materials characterization. Significant strides have been made in our understanding of image formation, electron diffraction, and beam/specimen interactions, both in terms of the "physics of the processes" and their practical implementation in modern instruments. It is the intent of the editors and authors of the current text, Principles of Analytical Electron Microscopy, to bring together, in one concise and readily accessible volume, these recent advances in the subject. The text begins with a thorough discussion of fundamentals to lay a foundation for today's state-of-the-art microscopy. All currently important areas in analytical electron microscopy-including electron optics, electron beam/specimen interactions, image formation, x-ray microanalysis, energy-loss spectroscopy, electron diffraction and specimen effects-have been given thorough attention. To increase the utility of the volume to a broader cross section of the scientific community, the book's approach is, in general, more descriptive than mathematical. In some areas, however, mathematical concepts are dealt with in depth, increasing the appeal to those seeking a more rigorous treatment of the subject.




Electron Backscatter Diffraction in Materials Science


Book Description

Electron backscatter diffraction is a very powerful and relatively new materials characterization technique aimed at the determination of crystallographic texture, grain boundary character distributions, lattice strain, phase identification, and much more. The purpose of this book is to provide the fundamental basis for electron backscatter diffraction in materials science, the current state of both hardware and software, and illustrative examples of the applications of electron backscatter diffraction to a wide-range of materials including undeformed and deformed metals and alloys, ceramics, and superconductors. The text has been substantially revised from the first edition, and the authors have kept the format as close as possible to the first edition text. The new developments covered in this book include a more comphrensive coverage of the fundamentals not covered in the first edition or other books in the field, the advances in hardware and software since the first edition was published, and current examples of application of electron backscatter diffraction to solve challenging problems in materials science and condensed-matter physics.




Modern Developments and Applications in Microbeam Analysis


Book Description

This supplement of Mikrochimica Acta contains selected papers from the Fifth Workshop of the European Microbeam Analysis Society (EMAS) on "Modern Developments and Applications in Microbeam Analysis" which th th took place from the 11 to 15 May 1997 in Torquay (UK). EMAS was founded in 1986 by scientists from many European countries in order to stimulate research in microbe am analysis and into its development and application. The society now has over 350 members from more than 20 countries. An important EMAS activity is the organisation of biennial workshops which focus upon the current status and developing trends in microanalytical techniques. For this meeting EMAS chose to invite speakers on the following subjects: Standardless analysis, EPMA techniques for quantitative near-surface analysis and depth profiling, Matrix corrections in Auger electron and X-ray photon spectroscopy, X-ray analysis and imaging using low voltage beams, Scanning probe and near field microscopies, EPMA of frozen biological bulk samples, Environmen tal SEM and X-ray microanalysis of biological materials, Quantitative elemental mapping of X-ray radiographs by factorial correspondence, X-ray spectrum processing and multivariate analysis, Thin film analysis and chemical mapping in the analytical electron microscope, Wavelength dispersive X-ray spectroscopy, High resolution non dispersive X-ray spectroscopy with state-of-the-art silicon detectors and Recent developments in instrumentation for X-ray analysis. These invited lectures were given by eminent scientists from Europe, the USA, and Australia In addition to the introductory lectures there were poster sessions at which some 110 posters were on display.