Electron Microscopy and Analysis 1999


Book Description

Electron Microscopy and Analysis 1999 provides an overview of recent developments and outlines opportunities for future research in electron microscopy. The book presents the wide-ranging applications of these techniques in materials science, metallurgy, and surface science. It is an authoritative reference for academics and researchers working in materials science, instrumentation, electron optics, and condensed matter physics.




Electron Microscopy


Book Description

New edition of an introductory reference that covers all of the important aspects of electron microscopy from a biological perspective, including theory of scanning and transmission; specimen preparation; darkroom, digital imaging, and image analysis; laboratory safety; interpretation of images; and an atlas of ultrastructure. Generously illustrated with bandw line drawings and photographs. Annotation copyrighted by Book News, Inc., Portland, OR




Biomedical Applications of Microprobe Analysis


Book Description

Biomedical Applications of Microprobe Analysis is a combination reference/laboratory manual for the use of microprobe analysis in both clinical diagnostic and research settings. Also called microchemical microscopy, microprobe analysis uses high-energy bombardment of cells and tissue, in combination with high resolution EM or confocal microscopy to provide a profile of the ion, metal, and mineral concentrations present in a sample. This allows insight into the physiology and pathophysiology of a wide variety of cells and tissues.This book describes methods for obtaining detailed information about the identity and composition of particles too small to be seen with the naked eye and describes how this information can be useful in diagnostic and biomedical research. - Up-to-date review of electron microprobe analysis - Detailed descriptions of sample preparation techniques - Recent technologies including confocal microscopy, infrared microspectroscopy, and laser raman spectroscopy - Over 100 illustrations with numerous specific applications - Contributions by world-renowned experts in the field - Brief summary of highlights precedes each chapter




Electron Microscopy Methods and Protocols


Book Description

Electron Microscopy Methods and Protocols is designed for the established researcher as a manual for extending knowledge of the field. It is also for the newcomer who wishes to move into the field. A wide range of applications for the examination of cells, tissues, biological macromolecules, molecular structures, and their interactions are discussed. We have tried to gather together methods that we consider to be those most generally appli- ble to current research in both cell and molecular biology. Each chapter c- tains a set of related practical protocols with examples provided by experts who have first-hand knowledge of the techniques they describe. The individual chapters are grouped according to similarities in their specimen preparation and methodology. Methods are presented in detail, in a step-by-step fashion, using reproducible protocols the authors have personally checked. During the last decade, the scientific literature describing the use of colloidal gold as an immunocytochemical marker has increased at an ex- nential rate, and this trend is expected to continue. We have included a large number of variations on the immunogold labeling technique. In both the ne- tive staining and cryo chapters, authors emphasize the “immunological app- cations” in order to correlate as fully as possible with the emphasis on immunogold labeling in the other chapters. Electron Microscopy Methods and Protocols commences with the routine preparation of biological material for classical transmission electron microscopy involving tissue fixation, embedding, and sectioning (Chap. 1).




Aberration-Corrected Analytical Transmission Electron Microscopy


Book Description

The book is concerned with the theory, background, and practical use of transmission electron microscopes with lens correctors that can correct the effects of spherical aberration. The book also covers a comparison with aberration correction in the TEM and applications of analytical aberration corrected STEM in materials science and biology. This book is essential for microscopists involved in nanoscale and materials microanalysis especially those using scanning transmission electron microscopy, and related analytical techniques such as electron diffraction x-ray spectrometry (EDXS) and electron energy loss spectroscopy (EELS).




Handbook of Sample Preparation for Scanning Electron Microscopy and X-Ray Microanalysis


Book Description

Scanning electr on microscopy (SEM) and x-ray microanalysis can produce magnified images and in situ chemical information from virtually any type of specimen. The two instruments generally operate in a high vacuum and a very dry environment in order to produce the high energy beam of electrons needed for imaging and analysis. With a few notable exceptions, most specimens destined for study in the SEM are poor conductors and composed of beam sensitive light elements containing variable amounts of water. In the SEM, the imaging system depends on the specimen being sufficiently electrically conductive to ensure that the bulk of the incoming electrons go to ground. The formation of the image depends on collecting the different signals that are scattered as a consequence of the high energy beam interacting with the sample. Backscattered electrons and secondary electrons are generated within the primary beam-sample interactive volume and are the two principal signals used to form images. The backscattered electron coefficient ( ? ) increases with increasing atomic number of the specimen, whereas the secondary electron coefficient ( ? ) is relatively insensitive to atomic number. This fundamental diff- ence in the two signals can have an important effect on the way samples may need to be prepared. The analytical system depends on collecting the x-ray photons that are generated within the sample as a consequence of interaction with the same high energy beam of primary electrons used to produce images.




Electron Microprobe Analysis and Scanning Electron Microscopy in Geology


Book Description

Originally published in 2005, this book covers the closely related techniques of electron microprobe analysis (EMPA) and scanning electron microscopy (SEM) specifically from a geological viewpoint. Topics discussed include: principles of electron-target interactions, electron beam instrumentation, X-ray spectrometry, general principles of SEM image formation, production of X-ray 'maps' showing elemental distributions, procedures for qualitative and quantitative X-ray analysis (both energy-dispersive and wavelength-dispersive), the use of both 'true' electron microprobes and SEMs fitted with X-ray spectrometers, and practical matters such as sample preparation and treatment of results. Throughout, there is an emphasis on geological aspects not mentioned in similar books aimed at a more general readership. The book avoids unnecessary technical detail in order to be easily accessible, and forms a comprehensive text on EMPA and SEM for geological postgraduate and postdoctoral researchers, as well as those working in industrial laboratories.




Low Voltage Electron Microscopy


Book Description

Part of the Wiley-Royal Microscopical Society Series, this book discusses the rapidly developing cutting-edge field of low-voltage microscopy, a field that has only recently emerged due to the rapid developments in the electron optics design and image processing. It serves as a guide for current and new microscopists and materials scientists who are active in the field of nanotechnology, and presents applications in nanotechnology and research of surface-related phenomena, allowing researches to observe materials as never before.




Springer Handbook of Microscopy


Book Description

This book features reviews by leading experts on the methods and applications of modern forms of microscopy. The recent awards of Nobel Prizes awarded for super-resolution optical microscopy and cryo-electron microscopy have demonstrated the rich scientific opportunities for research in novel microscopies. Earlier Nobel Prizes for electron microscopy (the instrument itself and applications to biology), scanning probe microscopy and holography are a reminder of the central role of microscopy in modern science, from the study of nanostructures in materials science, physics and chemistry to structural biology. Separate chapters are devoted to confocal, fluorescent and related novel optical microscopies, coherent diffractive imaging, scanning probe microscopy, transmission electron microscopy in all its modes from aberration corrected and analytical to in-situ and time-resolved, low energy electron microscopy, photoelectron microscopy, cryo-electron microscopy in biology, and also ion microscopy. In addition to serving as an essential reference for researchers and teachers in the fields such as materials science, condensed matter physics, solid-state chemistry, structural biology and the molecular sciences generally, the Springer Handbook of Microscopy is a unified, coherent and pedagogically attractive text for advanced students who need an authoritative yet accessible guide to the science and practice of microscopy.




Biological Specimen Preparation for Transmission Electron Microscopy


Book Description

This book contains all the necessary information and advice for anyone wishing to obtain electron micrographs showing the most accurate ultrastructural detail in thin sections of any type of biological specimen. The guidelines for the choice of preparative methods are based on an extensive survey of current laboratory practice. For the first time, in a textbook of this kind, the molecular events occurring during fixation and embedding are analysed in detail. The reasons for choosing particular specimen preparation methods are explained and guidance is given on how to modify established techniques to suit individual requirements. All the practical methods advocated are clearly described, with accompanying tables and the results obtainable are illustrated with many electron micrographs. Portland Press Series: Practical Methods in Electron Microscopy, Volume 17, Audrey M. Glauert, Editor Originally published in 1999. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.