Electron Spin Echo Envelope Modulation (ESEEM) Spectroscopy


Book Description

The first volume devoted entirely to Electron Spin Echo Envelope Modulation (ESEEM) Spectroscopy This valuable book provides an introduction and broad survey of topics in ESEEM spectroscopy, including the theory, instrumentation, peculiarities of ESE experiments, and analysis of experimental data with particular emphasis on orientationally disordered systems. Applications of ESEEM spectroscopy to study chemically and biologically important paramagnetic centers in single crystals, amorphous solids, and powders are discussed as well. Electron Spin Echo Envelope Modulation (ESEEM) Spectroscopy will benefit specialists in magnetic resonance spectroscopy, physicists, chemists, and biologists who use magnetic resonance in their research.




Electron Spin Echo Envelope Modulation (ESEEM) Spectroscopy


Book Description

The first volume devoted entirely to Electron Spin Echo Envelope Modulation (ESEEM) Spectroscopy This valuable book provides an introduction and broad survey of topics in ESEEM spectroscopy, including the theory, instrumentation, peculiarities of ESE experiments, and analysis of experimental data with particular emphasis on orientationally disordered systems. Applications of ESEEM spectroscopy to study chemically and biologically important paramagnetic centers in single crystals, amorphous solids, and powders are discussed as well. Electron Spin Echo Envelope Modulation (ESEEM) Spectroscopy will benefit specialists in magnetic resonance spectroscopy, physicists, chemists, and biologists who use magnetic resonance in their research.




Electron Paramagnetic Resonance Spectroscopy


Book Description

Although originally invented and employed by physicists, electron paramagnetic resonance (EPR) spectroscopy has proven to be a very efficient technique for studying a wide range of phenomena in many fields, such as chemistry, biochemistry, geology, archaeology, medicine, biotechnology, and environmental sciences. Acknowledging that not all studies require the same level of understanding of this technique, this book thus provides a practical treatise clearly oriented toward applications, which should be useful to students and researchers of various levels and disciplines. In this book, the principles of continuous wave EPR spectroscopy are progressively, but rigorously, introduced, with emphasis on interpretation of the collected spectra. Each chapter is followed by a section highlighting important points for applications, together with exercises solved at the end of the book. A glossary defines the main terms used in the book, and particular topics, whose knowledge is not required for understanding the main text, are developed in appendices for more inquisitive readers.




Principles of Pulse Electron Paramagnetic Resonance


Book Description

Pulse EPR (electron paramagnetic resonance) is one of the newest and most widely used techniques for examining the structure, function and dynamics of biological systems and synthetic materials. Until now, however, there has been no single text dedicated to this growing area of research. This text addresses the need for a comprehensive overview of Pulse EPR. The book covers the basic theory of pulse EPR, as well as a description and critical evaluation of the existing and emerging methods needed for selecting and conducting the proper experiment and analyzing the results. This is an indispensable reference for all scientists who need a thorough grounding in this increasingly popular field of spectroscopy.




NMR of Paramagnetic Molecules


Book Description

NMR of Paramagnetic Molecules: Applications to Metallobiomolecules and Models, Second Edition is a self-contained, comprehensive reference for chemists, physicists, and life scientists whose research involves analyzing paramagnetic compounds. Since the previous edition of this book was published, there have been many advancements in the field of paramagnetic NMR spectroscopy. This completely updated and expanded edition contains the latest fundamental theory and methods for mastery of this analytical technique. Users will learn how to interpret the NMR spectra of paramagnetic molecules, improve experimental techniques, and strengthen their understanding of the underlying theory and applications. - Reflects all advances in the field in a completely updated new edition - Presents new material on self-orientation residual dipolar couplings, solid state NMR, dynamic nuclear polarization, and paramagnetic restraints for structure calculations - Includes information relevant to paramagnetic molecules, metallobiomolecules, paramagnetic compounds, and paramagnetic NMR spectroscopy - Presents specific examples of paramagnetic inorganic species and experimental techniques for structure characterization




Biomolecular EPR Spectroscopy


Book Description

Comprehensive, Up-to-Date Coverage of Spectroscopy Theory and its Applications to Biological SystemsAlthough a multitude of books have been published about spectroscopy, most of them only occasionally refer to biological systems and the specific problems of biomolecular EPR (bioEPR). Biomolecular EPR Spectroscopy provides a practical introduction t




Pulsed Electron-electron Double Resonance


Book Description

This book covers the basic theory and techniques, as well as various applications of pulsed electron-electron double resonance (PELDOR or DEER). This electron paramagnetic resonance technique is able to measure the distances and the distribution of distances between electron spins in the 1.5-15 nanometer scale; to determine the geometry of spin-labeled molecules; to estimate the number of interacting spins in spin clusters; and to characterize the spatial distribution of paramagnetic centers. As a result, PELDOR is now a popular method in EPR spectroscopy, particularly in the context of biologically important systems and soft matter and is also applied to problems in physical chemistry, biochemistry, polymers, soft matter and materials. Enabling readers to gain an understanding of the fundamentals of the PELDOR methods and an appreciation of the opportunities PELDOR provides, the book helps readers solve their own physical and biochemical problems.




Principles and Applications of ESR Spectroscopy


Book Description

Principles and Applications of ESR Spectroscopy fills the gap between the detailed monographs in ESR spectroscopy and the general textbooks in molecular physics, physical chemistry, biochemistry or spectroscopy. The latter only briefly explain the underlying theory and do not provide details about applications, while the currently available ESR textbooks are primarily focused on the technique as such. This text is based upon the authors’ long experience of teaching the subject to a mixed audience, in the extreme case ranging from physics to biology. The potential of the method is illustrated with applications in fields such as molecular science, catalysis and environmental sciences, polymer and materials sciences, biochemistry and radiation chemistry/physics. Theoretical derivations have in general been omitted, as they have been presented repeatedly in previous works. The necessary theory is instead illustrated by practical examples from the literature.




EPR in the 21st Century


Book Description

The Proceedings in this volume are a refereed selection of presentations from The Third Asia-Pacific EPR/ESR Symposium (APES'01), held in Kobe, Japan from October 29 to November 1, 2001. Participants from 20 countries from Asia, Australia, Europe, North and South America presented 210 papers, of which 132 are included here.These Proceedings are also a blueprint for development of electron paramagnetic resonance (EPR) / electron spin resonance (ESR) in the Asia-Pacific region in the 21st century. The Symposium reflected a variety of research fields developed over half a century and focuses especially on the most recent developments, such as high-field and high-frequency EPR, which are envisaged to be further developed and applied to various fields in the 21st century.All sessions consisted of Plenary, Invited and Contributed presentations. The Plenary presentations aimed at summarizing the overall developments. Invited presentations, reviewing the most recent developments, and Contributed ones, dealing with original research recently carried out in the EPR/ESR area, were given in one of three parallel sessions. The unique research works presented cover various fields and reflect the existing diversity of applications of the EPR/ESR techniques.




High Resolution EPR


Book Description

Metalloproteins comprise approximately 30% of all known proteins, and are involved in a variety of biologically important processes, including oxygen transport, biosynthesis, electron transfer, biodegradation, drug metabolism, proteolysis, and hydrolysis of amides and esters, environmental sulfur and nitrogen cycles, and disease mechanisms. EPR spectroscopy has an important role in not only the geometric structural characterization of the redox cofactors in metalloproteins but also their electronic structure, as this is crucial for their reactivity. The advent of x-ray crystallographic snapshots of the active site redox cofactors in metalloenzymes in conjunction with high-resolution EPR spectroscopy has provided detailed structural insights into their catalytic mechanisms. This volume was conceived in 2005 at the Rocky Mountain Conference on Analytical Chemistry (EPR Symposium) to highlight the importance of high-resolution EPR spectroscopy to the structural (geometric and electronic) characterization of redox active cofactors in metalloproteins. We have been fortunate to have enlisted internationally recognized experts in this joint venture to provide the scientific community with an overview of high-resolution EPR and its application to metals in biology. This volume, High-Resolution EPR: Applications to Metalloenzymes and Metals in Medicine, covers high-resolution EPR methods, iron proteins, nickel and copper enzymes, and metals in medicine. An eloquent synopsis of each chapter is provided by John Pilbrow in the Introduction. A second volume, Metals in Biology: Applications of High-Resolution EPR to Metalloenzymes, will appear later this year covering the complement of other metalloproteins. One of the pioneers in the development of pulsed EPR and its application to metalloproteins was Arthur Schweiger, whose contribution we include in this volume. Unfortunately, he passed away suddenly during the preparation of this volume. The editors and coauthors are extremely honored to dedicate this volume to the memory of Arthur Schweiger in recognition of his technical advances and insights into pulsed EPR and its application to metalloproteins. Arthur was extremely humble and treated everyone with equal respect. He was a gifted educator with an ability to explain complex phenomena in terms of simple intuitive pictures, had a delightful personality, and continues to be sadly missed by the community. It is an honor for the editors to facilitate the dissemination of these excellent contributions to the scientific community. Suggestions for future volumes are always appreciated.