Electronic Properties of Inhomogeneous Semiconductors
Author : A.Y. Shik
Publisher : CRC Press
Page : 180 pages
File Size : 33,8 MB
Release : 1995-10-06
Category : Science
ISBN : 9782884490436
Author : A.Y. Shik
Publisher : CRC Press
Page : 180 pages
File Size : 33,8 MB
Release : 1995-10-06
Category : Science
ISBN : 9782884490436
Author : Winfried Mönch
Publisher : Springer Science & Business Media
Page : 269 pages
File Size : 25,86 MB
Release : 2013-04-17
Category : Technology & Engineering
ISBN : 3662069458
Using the continuum of interface-induced gap states (IFIGS) as a unifying theme, Mönch explains the band-structure lineup at all types of semiconductor interfaces. These intrinsic IFIGS are the wave-function tails of electron states, which overlap a semiconductor band-gap exactly at the interface, so they originate from the quantum-mechanical tunnel effect. He shows that a more chemical view relates the IFIGS to the partial ionic character of the covalent interface-bonds and that the charge transfer across the interface may be modeled by generalizing Pauling?s electronegativity concept. The IFIGS-and-electronegativity theory is used to quantitatively explain the barrier heights and band offsets of well-characterized Schottky contacts and semiconductor heterostructures, respectively.
Author : Lok C. Lew Yan Voon
Publisher : Springer Science & Business Media
Page : 452 pages
File Size : 47,59 MB
Release : 2009-06-06
Category : Science
ISBN : 3540928723
I ?rst heard of k·p in a course on semiconductor physics taught by my thesis adviser William Paul at Harvard in the fall of 1956. He presented the k·p Hamiltonian as a semiempirical theoretical tool which had become rather useful for the interpre- tion of the cyclotron resonance experiments, as reported by Dresselhaus, Kip and Kittel. This perturbation technique had already been succinctly discussed by Sho- ley in a now almost forgotten 1950 Physical Review publication. In 1958 Harvey Brooks, who had returned to Harvard as Dean of the Division of Engineering and Applied Physics in which I was enrolled, gave a lecture on the capabilities of the k·p technique to predict and ?t non-parabolicities of band extrema in semiconductors. He had just visited the General Electric Labs in Schenectady and had discussed with Evan Kane the latter’s recent work on the non-parabolicity of band extrema in semiconductors, in particular InSb. I was very impressed by Dean Brooks’s talk as an application of quantum mechanics to current real world problems. During my thesis work I had performed a number of optical measurements which were asking for theoretical interpretation, among them the dependence of effective masses of semiconductors on temperature and carrier concentration. Although my theoretical ability was rather limited, with the help of Paul and Brooks I was able to realize the capabilities of the k·p method for interpreting my data in a simple way.
Author : Vladimir Mitin
Publisher : CRC Press
Page : 917 pages
File Size : 36,74 MB
Release : 2020-11-23
Category : Medical
ISBN : 100058688X
Graphene demonstrates interesting electrical, optical, and optoelectronic properties. A number of other one-atom-thick material structures have been discovered and studied. Industrially applicable technologies for these structures are currently under active development. In spite of enormous research in the area of devices based on graphene, the number of extensive review publications on THz devices based on graphene is small. This review volume would fill the gap. Researchers and engineers working in the fields of electronics and plasmonics can use it to understand the influence of plasmonics on device performance. The book can be also be used as a required text for doctorate courses and as a supplementary material for postgraduate courses. The material presented in the book is reviewed in detail in Chapter 1. Chapter 2 discusses the electronic and plasmonic properties of graphene and heterostructures based on graphene for all devices. Chapters 3–7 focus on the concepts of detectors and emitters with a special emphasis on plasmonic enhancement of those devices as well as on population inversion and lasing.
Author : B.I. Shklovskii
Publisher : Springer Science & Business Media
Page : 400 pages
File Size : 24,23 MB
Release : 2013-11-09
Category : Science
ISBN : 3662024039
First-generation semiconductors could not be properly termed "doped- they were simply very impure. Uncontrolled impurities hindered the discovery of physical laws, baffling researchers and evoking pessimism and derision in advocates of the burgeoning "pure" physical disciplines. The eventual banish ment of the "dirt" heralded a new era in semiconductor physics, an era that had "purity" as its motto. It was this era that yielded the successes of the 1950s and brought about a new technology of "semiconductor electronics". Experiments with pure crystals provided a powerful stimulus to the develop ment of semiconductor theory. New methods and theories were developed and tested: the effective-mass method for complex bands, the theory of impurity states, and the theory of kinetic phenomena. These developments constitute what is now known as semiconductor phys ics. In the last fifteen years, however, there has been a noticeable shift towards impure semiconductors - a shift which came about because it is precisely the impurities that are essential to a number of major semiconductor devices. Technology needs impure semiconductors, which unlike the first-generation items, are termed "doped" rather than "impure" to indicate that the impurity levels can now be controlled to a certain extent.
Author :
Publisher :
Page : 610 pages
File Size : 36,53 MB
Release : 1984
Category : Solar energy
ISBN :
Author : Hartmut Haug
Publisher : World Scientific
Page : 407 pages
File Size : 43,62 MB
Release : 1990-04-01
Category :
ISBN : 9814602310
The current technological revolution in the development of computing devices has created a demand for a textbook on the quantum theory of the electronic and optical properties of semiconductors and semiconductor devices. This book successfully fulfills this need. Based on lectures given by the authors, it is a comprehensive introduction for researchers or graduate-level students to the subject. Certain sections can also serve as a graduate-level textbook for use in solid state physics courses or for more specialized courses. The final chapters establish a direct link to current research in semiconductor physics.
Author : André Moliton
Publisher : Springer Science & Business Media
Page : 354 pages
File Size : 28,1 MB
Release : 2007-03-14
Category : Science
ISBN : 0387380647
This book presents practical and relevant technological information about electromagnetic properties of materials and their applications. It is aimed at senior undergraduate and graduate students in materials science and is the product of many years of teaching basic and applied electromagnetism. Topics range from the spectroscopy and characterization of dielectrics, to non-linear effects, to ion-beam applications in materials.
Author : P. Predeep
Publisher : BoD – Books on Demand
Page : 500 pages
File Size : 17,15 MB
Release : 2011-09-26
Category : Technology & Engineering
ISBN : 9533072768
Optoelectronics - Materials and Techniques is the first part of an edited anthology on the multifaceted areas of optoelectronics by a selected group of authors including promising novices to the experts in the field. Photonics and optoelectronics are making an impact multiple times the semiconductor revolution made on the quality of our life. In telecommunication, entertainment devices, computational techniques, clean energy harvesting, medical instrumentation, materials and device characterization and scores of other areas of R
Author : Alexander Shik
Publisher : World Scientific
Page : 106 pages
File Size : 21,47 MB
Release : 1998-01-09
Category : Science
ISBN : 9814496863
This invaluable book is devoted to the physics, technology and device applications of semiconductor structures with ultrathin layers where the electronic properties are governed by the quantum-mechanical laws. Such structures called quantum wells or structures with the two-dimensional electron gas, have become one of the most actively investigated objects in modern solid state physics. Electronic properties of quantum wells differ dramatically from those of bulk semiconductors, which allows one to observe new types of physical phenomena, such as the quantum Hall effect and many other so-far-unknown kinetic and optical effects. This, in turn, offers wide opportunities for creating semiconductor devices based on new principles, and it has give birth to the new branch of electronics called nanoelectronics.