Electrophoretic Deposition of Nanomaterials


Book Description

This book provides a comprehensive overview of contemporary basic research, emerging technology, and commercial and industrial applications associated with the electrophoretic deposition of nanomaterials. This presentation of the subject includes an historical survey, the underlying theory of electrophoresis, dielectrophoresis, and the colloidal deposition of materials. This is followed by an assessment of the experimental equipment and procedures for electrophoretic and dielectrophoretic aggregation, manipulation, and deposition of nanoparticles, nanotubes, and other nanomaterials. Additional chapters explore the specific science and technology of electrophoretic film formation, using widely studied and application-driven nanomaterials, such as carbon nanotubes, luminescent nanocrystals, and nano-ceramics. The concluding chapters explore industrial applications and procedures associated with electrophoretic deposition of nanomaterials.




Handbook of Nanoelectrochemistry


Book Description

This edited book is devoted to different electrochemical aspects of nano materials. This comprehensive reference text is basically divided in 3 parts: electrochemical synthesis routes for nanosized materials, electrochemical properties of nano materials and electrochemical characterization methods for nanostructures. The Handbook is a reference work to chemists and materials scientists interested in the nano aspects of electrochemistry. The chapters are written by a number of international experts in the field and the content will assist members of both electrochemical and materials communities to keep abreast of developments in the field.




Nanostructures And Nanomaterials: Synthesis, Properties, And Applications (2nd Edition)


Book Description

This is the 2nd edition of the original “Nanostructures and Nanomaterials” written by Guozhong Cao and published by Imperial College Press in 2004.This important book focuses not only on the synthesis and fabrication of nanostructures and nanomaterials, but also includes properties and applications of nanostructures and nanomaterials, particularly inorganic nanomaterials. It provides balanced and comprehensive coverage of the fundamentals and processing techniques with regard to synthesis, characterization, properties, and applications of nanostructures and nanomaterials. Both chemical processing and lithographic techniques are presented in a systematic and coherent manner for the synthesis and fabrication of 0-D, 1-D, and 2-D nanostructures, as well as special nanomaterials such as carbon nanotubes and ordered mesoporous oxides. The book will serve as a general introduction to nanomaterials and nanotechnology for teaching and self-study purposes.




Electrochemical Phase Formation and Growth


Book Description

Electrochemical processes and methods are basic to many important scientific disciplines, materials science and nanotechnology being only two keywords. For the first time in more than twenty years this volume presents a critical survey of the foundations, methodology and applications of electrochemical phase formation and growth processes. Written by a team of three internationally renowned authors, it is an invaluable source of information for all scientists concerned with electrocrystallization of metals or the in-situ characterization of electron-conducting surfaces. Not only the numerous illustrations (partly in colour) but also the vast number of references covering the literature up to and including 1995 make this volume indispensable for every laboratory working in electrochemical or materials science.




Porous Materials


Book Description

This book is written in honor of Prof. Francisco Rodriguez-Reinoso, who has made significant contributions in the area of porous materials such as active carbons and graphenes. It details the preparation of porous materials, including carbonaceous, zeolitic, and siliceous materials, MOFs, aerogels, and xerogels, describing the characterization techniques and the interpretation of the results, and highlighting common errors that can occur during the process. This book subsequently presents the use of modeling based on thermodynamics to describe the materials. Lastly, it illustrates a number of current environmental protection applications in the context of both water and air.




Electrophoretic Deposition (EPD)


Book Description

Electrophoretic deposition (EPD) is attracting many researchers' attention nowadays because of its numerous advantages, such as simple deposition apparatus, fast deposition rate, and the ease of deposition with a controlled thickness, compared to the other processing techniques. Chapter One reports the effectiveness of AC-EPD for the deposition and infiltration of various ceramic nanoparticles in an aqueous suspension. In Chapter Two, the authors discuss the functionalization of SnO2 thick films prepared by electrophoretic deposition. Chapter Three concludes that despite being a wet process, EPD offers easy control of the thickness and morphology of a deposited film through simple adjustments to the deposition time and the applied potential.




Corrosion Protection and Control Using Nanomaterials


Book Description

Corrosion is an expensive and potentially dangerous problem in many industries. The potential application of different nanostructured materials in corrosion protection, prevention and control is a subject of increasing interest. Corrosion protection and control using nanomaterials explores the potential use of nanotechnology in corrosion control.The book is divided into two parts. Part one looks at the fundamentals of corrosion behaviour and the manufacture of nanocrystalline materials. Chapters discuss the impact of nanotechnology in reducing corrosion cost, and investigate the influence of various factors including thermodynamics, kinetics and grain size on the corrosion behaviour of nanocrystalline materials. There are also chapters on electrodeposition and the corrosion behaviour of electrodeposited nanocrystalline materials. Part two provides a series of case studies of applications of nanomaterials in corrosion control. Chapters review oxidation protection using nanocrystalline structures at various temperatures, sol- gel and self-healing nanocoatings and the use of nanoreservoirs and polymer nanocomposites in corrosion control.With its distinguished editors and international team of expert contributors, Corrosion protection and control using nanomaterials is an invaluable reference tool for researchers and engineers working with nanomaterials in a variety of industries including, aerospace, automotive and chemical engineering as well as academics studying the unique protection and control offered by nanomaterials against corrosion. Explores the potential use of nanotechnology and nanomaterials for corrosion prevention, protection and control Discusses the impact of nanotechnology in reducing corrosion cost and investigates various factors on the corrosion behaviour of nanocrystalline materials Provides a series of case studies and applications of nanomaterials for corrosion control




Electroplating of Nanostructures


Book Description

The electroplating was widely used to electrodeposit the nanostructures because of its relatively low deposition temperature, low cost and controlling the thickness of the coatings. With advances in electronics and microprocessor, the amount and form of the electrodeposition current applied can be controlled. The pulse electrodeposition has the interesting advantages such as higher current density application, higher efficiency and more variable parameters compared to direct current density. This book collects new developments about electroplating and its use in nanotechnology.




Nanomaterials


Book Description

Nanomaterials and nanostructures are the original product of nanotechnology, and the key building blocks for enabling technologies. In this context, this book presents a concise overview of the synthesis and characterization methods of nanomaterials and nanostructures, while integrating facets of physics, chemistry, and engineering. The book summarizes the fundamentals and technical approaches in synthesis, and processing of nanostructures and nanomaterials, so as the reader can have a systematic and quick picture of the field. This book focuses on functional aspects of nanomaterials that have a high relevance to immediate applications, such as catalysis, energy harvesting, biosensing, and surface functionalization. There are chapters addressing nanostructured materials and composites and covering basic properties and requirements of this new class of engineered materials.




Coatings for Biomedical Applications


Book Description

The biomaterials sector is rapidly expanding and significant advances have been made in the technology of biomedical coatings and materials, which provide a means to improve the wear of joints, change the biological interaction between implant and host and combine the properties of various materials to improve device performance. Coatings for biomedical applications provides an extensive review of coating types and surface modifications for biomedical applications. The first part of the book explores a range of coating types and their biomedical applications. Chapters look at hydrophilic, mineral and pyrolytic carbon coatings in and ex vivo orthopaedic applications and finally at surface modification and preparation techniques. Part two presents case studies of orthopaedic and ophthalmic coatings, and biomedical applications including vascular stents, cardiopulomonary by-pass equipment and ventricular assist devices. With its clear structure and comprehensive review of research, Coatings for biomedical applications is a valuable resource to researchers, scientists and engineers in the biomedical industry. It will also benefit anyone studying or working within the biomedical sector, particularly those specialising in biomedical coatings. Provides an extensive review of coating types and surface modifications for biomedical applications Chapters look at hydrophilic coatings for biomedical applications in and ex vivo, mineral coatings for orthopaedic applications, pyrolytic carbon coating and other commonly-used biomedical coatings Presents case studies of orthopaedic and ophthalmic coatings, and biomedical applications including vascular stents, cardiopulomonary by-pass equipment and ventricular assist devices