Electrospinning for Advanced Energy and Environmental Applications


Book Description

Electrospinning for Advanced Energy and Environmental Applications delivers a state-of-the-art overview of the use of electrospun fibers in energy conversion and storage, as well as in environmental sensing and remediation. Featuring contributions from leading experts in electrospinning and its specific applications, this book: Introduces the elect




Electrospinning for Advanced Energy Storage Applications


Book Description

This book provides a consolidated description of the process of electro-spinning and detailed properties and applications of electro-spun electrodes and electrolytes in energy storage devices. It discusses the preparation, structure and electrochemical properties of nanofiber electrode and electrolyte materials. It focuses exclusively on Lithium Ion batteries, with the contents discussing different aspects of electrospinning in storage systems. This book aims to provide a comprehensive resource to help researchers choose the best electrodes and electrolyte materials based on the properties required for their desired commercial applications. It will be a useful guide to graduate students and researchers working in solid-state chemistry, physics, materials chemistry, and chemical engineering on aspects of energy storage.




Synthesis and Applications of Electrospun Nanofibers


Book Description

Synthesis and Applications of Electrospun Nanofibers examines processing techniques for nanofibers and their applications in a variety of industry sectors, including energy, agriculture and biomedicine. The book gives readers a thorough understanding of both electrospinning and interfacial polymerization techniques for their production. In addition, the book explore the use of nanofibers in a variety of industry sectors, with particular attention given to nanofibers in medicine, such as in drug and gene delivery, artificial blood vessels, artificial organs and medical facemasks, and in energy and environmental applications. Specific topics of note include fuel cells, lithium ion batteries, solar cells, supercapacitors, energy storage materials, sensors, filtration materials, protective clothing, catalysis and electromagnetic shielding. This book will serve as an important reference resource for materials scientists, engineers and biomedical scientists who want to learn more on the uses of nanofibers. - Describes a variety of techniques for producing nanofibers - Shows how nanofibers are used in a range of industrial sectors, including illustrative case studies - Discusses the pros and cons of using different fabrication techniques to produce nanofibers




Electrospun Nanofibers for Energy and Environmental Applications


Book Description

This book offers a comprehensive review of the latest advances in developing functional electrospun nanofibers for energy and environmental applications, which include fuel cells, lithium-ion batteries, solar cells, supercapacitors, energy storage materials, sensors, filtration materials, protective clothing, catalysis, structurally-colored fibers, oil spill cleanup, self-cleaning materials, adsorbents, and electromagnetic shielding. This book is aimed at both newcomers and experienced researchers in the field of nanomaterials, especially those who are interested in addressing energy-related and environmental problems with the help of electrospun nanofibers. Bin Ding, PhD, and Jianyong Yu, PhD, are both Professors at the College of Materials Science and Engineering, Donghua University, China.




Polymer-Engineered Nanostructures for Advanced Energy Applications


Book Description

This book provides a comprehensive overview of engineering nanostructures mediated by functional polymers in combination with optimal synthesis and processing techniques. The focus is on polymer-engineered nanostructures for advanced energy applications. It discusses a variety of polymers that function as precursors, templates, nano-reactors, surfactants, stabilizers, modifiers, dopants, and spacers for directing self-assembly, assisting organization, and templating growth of numerous diverse nanostructures. It also presents a wide range of polymer processing techniques that enable the efficient design and optimal fabrication of nanostructured polymers, inorganics, and organic–inorganic nanocomposites using in-situ hybridization and/or ex-situ recombination methodologies. Combining state-of-the-art knowledge from polymer-guided fabrication of advanced nanostructures and their unique properties, it especially highlights the new, cutting-edge breakthroughs, future horizons, and insights into such nanostructured materials in applications such as photovoltaics, fuel cells, thermoelectrics, piezoelectrics, ferroelectrics, batteries, supercapacitors, photocatalysis, and hydrogen generation and storage. It offers an instructive and approachable guide to polymer-engineered nanostructures for further development of advanced energy materials to meet ever-increasing global energy demands. Interdisciplinary and broad perspectives from internationally respected contributors ensure this book serves as a valuable reference source for scientists, students, and engineers working in polymer science, renewable energy materials, materials engineering, chemistry, physics, surface/interface science, and nanotechnology. It is also suitable as a textbook for universities, institutes, and industrial institutions.




Methanol Fuel in Transportation Sector and Fuel Cells


Book Description

This book provides a comprehensive overview of methanol fuel. It reviews challenges and solutions in using methanol fuel in the transportation sector. Methanol is also used as the fuel in direct methanol fuel cells (DMFCs), and thus, the book reviews their working principles, performance, challenges, solutions, and applications. It also explores new developments in anode and cathode electrocatalysts, with an emphasis on nanostructured carbon support materials and their structure, electrochemical properties, and performance.




Electrospinning


Book Description

An overview of the recent developments in electrospinning for commercial energy and health applications.




Electrochemical Surface Science: Basics and Applications


Book Description

Electrochemical surface science (EC-SS) is the natural advancement of traditional surface science (where gas–vacuum/solid interfaces are studied) to liquid (solution)/electrified solid interfaces. Such a merging between two different disciplines—i.e., surface science (SS) and electrochemistry—officially advanced ca. three decades ago. The main characteristic of EC-SS versus electrochemistry is the reductionist approach undertaken, inherited from SS and aiming to understand the microscopic processes occurring at electrodes on the atomic level. A few of the exemplary keystone tools of EC-SS include EC-scanning probe microscopies, operando and in situ spectroscopies and electron microscopies, and differential EC mass spectrometry (DEMS). EC-SS indirectly (and often unconsciously) receives a great boost from the requirement for rational design of energy conversion and storage devices for the next generation of energetic landscapes. As a matter of fact, the number of material science groups deeply involved in such a challenging field has tremendously expanded and, within such a panorama, EC and SS investigations are intimately combined in a huge number of papers. The aim of this Special Issue is to offer an open access forum where researchers in the field of electrochemistry, surface science, and materials science could outline the great advances that can be reached by exploiting EC-SS approaches. Papers addressing both the basic science and more applied issues in the field of EC-SS and energy conversion and storage materials have been published in this Special Issue.




Functionalized Nanofibers


Book Description

Functionalized Nanofibers: Synthesis and Industrial Applications presents the latest advances in the fabrication, design, processing, and properties of functionalized nanofibers for a range of advanced applications. Sections introduce fabrication, mechanisms, and design of functionalized nanofibers, explaining electrospinning and non-electrospinning techniques, optimization of structural designs, surface functionalization techniques, and characterization methods. Subsequent sections focus on specific application areas, highlighting preparation methods and applications of functionalized nanofibers across biomedicine, surfaces and coatings, food, environment, energy, electronics, and textiles. Finally, environmental impact and safety and legal aspects related to the utilization of functionalized nanofibers are considered. This is a valuable resource for researchers and advanced students with an interest in nanomaterials and nanotechnology, and across other disciplines such as polymer science, chemistry, chemical engineering, and materials science and engineering. - Integrates discussions of physics, chemistry, biology and materials science behind functionalized nanofibers - Opens the door to a range of applications across biomedicine, surfaces and coatings, food, environment, energy, electronics and textiles - Analyzes challenges and opportunities relating to environmental, health and safety issues




Electrospun Materials and Their Allied Applications


Book Description

The aim of this book is to explore the history, fundamentals, manufacturing processes, optimization parameters, and applications of electrospun materials. The book includes various types of electrospun materials such as antimicrobial, smart, bioinspired systems. It focuses on the many application areas for electrospun materials such as energy storage and harvesting, catalysis, biomedical including gene delivery and tissue engineering, separation, adsorption and water treatment technologies, packaging. The book emphasizes the enhanced sustainable properties of electrospun materials, with the challenges and future developments being discussed in detail. The chapters are written by top-class researchers and experts from throughout the world.