Electrostatic Discharge Protection


Book Description

Electrostatic discharge (ESD) is one of the most prevalent threats to electronic components. In an ESD event, a finite amount of charge is transferred from one object (i.e., human body) to another (i.e., microchip). This process can result in a very high current passing through the microchip within a very short period of time. Thus, more than 35 percent of single-event chip damages can be attributed to ESD events, and designing ESD structures to protect integrated circuits against the ESD stresses is a high priority in the semiconductor industry. Electrostatic Discharge Protection: Advances and Applications delivers timely coverage of component- and system-level ESD protection for semiconductor devices and integrated circuits. Bringing together contributions from internationally respected researchers and engineers with expertise in ESD design, optimization, modeling, simulation, and characterization, this book bridges the gap between theory and practice to offer valuable insight into the state of the art of ESD protection. Amply illustrated with tables, figures, and case studies, the text: Instills a deeper understanding of ESD events and ESD protection design principles Examines vital processes including Si CMOS, Si BCD, Si SOI, and GaN technologies Addresses important aspects pertinent to the modeling and simulation of ESD protection solutions Electrostatic Discharge Protection: Advances and Applications provides a single source for cutting-edge information vital to the research and development of effective, robust ESD protection solutions for semiconductor devices and integrated circuits.




Practical ESD Protection Design


Book Description

An authoritative single-volume reference on the design and analysis of ESD protection for ICs Electrostatic discharge (ESD) is a major reliability challenge to semiconductors, integrated circuits (ICs), and microelectronic systems. On-chip ESD protection is a vital to any electronic products, such as smartphones, laptops, tablets, and other electronic devices. Practical ESD Protection Design provides comprehensive and systematic guidance on all major aspects of designs of on-chip ESD protection for integrated circuits (ICs). Written for students and practicing engineers alike, this one-stop resource covers essential theories, hands-on design skills, computer-aided design (CAD) methods, characterization and analysis techniques, and more on ESD protection designs. Detailed chapters examine an array of topics ranging from fundamental to advanced, including ESD phenomena, ESD failure analysis, ESD testing models, ESD protection devices and circuits, ESD design layout and technology effects, ESD design flows and co-design methods, ESD modelling and CAD techniques, and future ESD protection concepts. Based on the author’s decades of design, research and teaching experiences, Practical ESD Protection Design: • Features numerous real-world ESD protection design examples • Emphasizes on ESD protection design techniques and procedures • Describes ESD-IC co-design methodology for high-performance mixed-signal ICs and broadband radio-frequency (RF) ICs • Discusses CAD-based ESD protection design optimization and prediction using both Technology and Electrical Computer-Aided Design (TCAD/ECAD) simulation • Addresses new ESD CAD algorithms and tools for full-chip ESD physical design verification • Explores the disruptive future outlook of ESD protection Practical ESD Protection Design is a valuable reference for industrial engineers and academic researchers in the field, and an excellent textbook for electronic engineering courses in semiconductor microelectronics and integrated circuit designs.




ESD Protection Device and Circuit Design for Advanced CMOS Technologies


Book Description

ESD Protection Device and Circuit Design for Advanced CMOS Technologies is intended for practicing engineers working in the areas of circuit design, VLSI reliability and testing domains. As the problems associated with ESD failures and yield losses become significant in the modern semiconductor industry, the demand for graduates with a basic knowledge of ESD is also increasing. Today, there is a significant demand to educate the circuits design and reliability teams on ESD issues. This book makes an attempt to address the ESD design and implementation in a systematic manner. A design procedure involving device simulators as well as circuit simulator is employed to optimize device and circuit parameters for optimal ESD as well as circuit performance. This methodology, described in ESD Protection Device and Circuit Design for Advanced CMOS Technologies has resulted in several successful ESD circuit design with excellent silicon results and demonstrates its strengths.




The ESD Handbook


Book Description

A practical and comprehensive reference that explores Electrostatic Discharge (ESD) in semiconductor components and electronic systems The ESD Handbook offers a comprehensive reference that explores topics relevant to ESD design in semiconductor components and explores ESD in various systems. Electrostatic discharge is a common problem in the semiconductor environment and this reference fills a gap in the literature by discussing ESD protection. Written by a noted expert on the topic, the text offers a topic-by-topic reference that includes illustrative figures, discussions, and drawings. The handbook covers a wide-range of topics including ESD in manufacturing (garments, wrist straps, and shoes); ESD Testing; ESD device physics; ESD semiconductor process effects; ESD failure mechanisms; ESD circuits in different technologies (CMOS, Bipolar, etc.); ESD circuit types (Pin, Power, Pin-to-Pin, etc.); and much more. In addition, the text includes a glossary, index, tables, illustrations, and a variety of case studies. Contains a well-organized reference that provides a quick review on a range of ESD topics Fills the gap in the current literature by providing information from purely scientific and physical aspects to practical applications Offers information in clear and accessible terms Written by the accomplished author of the popular ESD book series Written for technicians, operators, engineers, circuit designers, and failure analysis engineers, The ESD Handbook contains an accessible reference to ESD design and ESD systems.




Basic ESD and I/O Design


Book Description

This volume presents an integrated treatment of ESD, I/O, and process parameter interactions that both I/O designers and process designers can use. It examines key factors in I/O and ESD design and testing, and helps the reader consider ESD and reliability issues up front when making I/O choices. Emphasizing clarity and simplicity, this book focuses on design principles that can be applied widely as this dynamic field continues to evolve.




Electrostatic Discharge Protection


Book Description

Electrostatic discharge (ESD) is one of the most prevalent threats to electronic components. In an ESD event, a finite amount of charge is transferred from one object (i.e., human body) to another (i.e., microchip). This process can result in a very high current passing through the microchip within a very short period of time. Thus, more than 35 percent of single-event chip damages can be attributed to ESD events, and designing ESD structures to protect integrated circuits against the ESD stresses is a high priority in the semiconductor industry. Electrostatic Discharge Protection: Advances and Applications delivers timely coverage of component- and system-level ESD protection for semiconductor devices and integrated circuits. Bringing together contributions from internationally respected researchers and engineers with expertise in ESD design, optimization, modeling, simulation, and characterization, this book bridges the gap between theory and practice to offer valuable insight into the state of the art of ESD protection. Amply illustrated with tables, figures, and case studies, the text: Instills a deeper understanding of ESD events and ESD protection design principles Examines vital processes including Si CMOS, Si BCD, Si SOI, and GaN technologies Addresses important aspects pertinent to the modeling and simulation of ESD protection solutions Electrostatic Discharge Protection: Advances and Applications provides a single source for cutting-edge information vital to the research and development of effective, robust ESD protection solutions for semiconductor devices and integrated circuits.




System Level ESD Protection


Book Description

This book addresses key aspects of analog integrated circuits and systems design related to system level electrostatic discharge (ESD) protection. It is an invaluable reference for anyone developing systems-on-chip (SoC) and systems-on-package (SoP), integrated with system-level ESD protection. The book focuses on both the design of semiconductor integrated circuit (IC) components with embedded, on-chip system level protection and IC-system co-design. The readers will be enabled to bring the system level ESD protection solutions to the level of integrated circuits, thereby reducing or completely eliminating the need for additional, discrete components on the printed circuit board (PCB) and meeting system-level ESD requirements. The authors take a systematic approach, based on IC-system ESD protection co-design. A detailed description of the available IC-level ESD testing methods is provided, together with a discussion of the correlation between IC-level and system-level ESD testing methods. The IC-level ESD protection design is demonstrated with representative case studies which are analyzed with various numerical simulations and ESD testing. The overall methodology for IC-system ESD co-design is presented as a step-by-step procedure that involves both ESD testing and numerical simulations.




ESD Basics


Book Description

Electrostatic discharge (ESD) continues to impact semiconductor manufacturing, semiconductor components and systems, as technologies scale from micro- to nano electronics. This book introduces the fundamentals of ESD, electrical overstress (EOS), electromagnetic interference (EMI), electromagnetic compatibility (EMC), and latchup, as well as provides a coherent overview of the semiconductor manufacturing environment and the final system assembly. It provides an illuminating look into the integration of ESD protection networks followed by examples in specific technologies, circuits, and chips. The text is unique in covering semiconductor chip manufacturing issues, ESD semiconductor chip design, and system problems confronted today as well as the future of ESD phenomena and nano-technology. Look inside for extensive coverage on: The fundamentals of electrostatics, triboelectric charging, and how they relate to present day manufacturing environments of micro-electronics to nano-technology Semiconductor manufacturing handling and auditing processing to avoid ESD failures ESD, EOS, EMI, EMC, and latchup semiconductor component and system level testing to demonstrate product resilience from human body model (HBM), transmission line pulse (TLP), charged device model (CDM), human metal model (HMM), cable discharge events (CDE), to system level IEC 61000-4-2 tests ESD on-chip design and process manufacturing practices and solutions to improve ESD semiconductor chip solutions, also practical off-chip ESD protection and system level solutions to provide more robust systems System level concerns in servers, laptops, disk drives, cell phones, digital cameras, hand held devices, automobiles, and space applications Examples of ESD design for state-of-the-art technologies, including CMOS, BiCMOS, SOI, bipolar technology, high voltage CMOS (HVCMOS), RF CMOS, smart power, magnetic recording technology, micro-machines (MEMs) to nano-structures ESD Basics: From Semiconductor Manufacturing to Product Use complements the author’s series of books on ESD protection. For those new to the field, it is an essential reference and a useful insight into the issues that confront modern technology as we enter the Nano-electronic Era.




China Standard: GB/T 32304-2015 Electrostatic discharge protection requirements for aerospace electronic products


Book Description

This standard specifies the general requirements for electrostatic protection of aerospace electronic products and detailed technical and management requirements for planning, training, anti-static work areas, packaging, marking, procurement and outsourcing, monitoring and measurement, auditing, management review and improvement. This standard is applicable to scientific research and production activities such as procurement, production, inspection, testing, failure analysis, packaging, labeling, maintenance, storage, distribution and transportation of aerospace electrostatic discharge sensitive electronic products. At the same time, this standard can also be used as the basis for evaluating or reviewing the organization's static protection management system.




ESD


Book Description

With the growth of high-speed telecommunications and wireless technology, it is becoming increasingly important for engineers to understand radio frequency (RF) applications and their sensitivity to electrostatic discharge (ESD) phenomena. This enables the development of ESD design methods for RF technology, leading to increased protection against electrical overstress (EOS) and ESD. ESD: RF Technology and Circuits: Presents methods for co-synthesizisng ESD networks for RF applications to achieve improved performance and ESD protection of semiconductor chips; discusses RF ESD design methods of capacitance load transformation, matching network co-synthesis, capacitance shunts, inductive shunts, impedance isolation, load cancellation methods, distributed loads, emitter degeneration, buffering and ballasting; examines ESD protection and design of active and passive elements in RF complementary metal-oxide-semiconductor (CMOS), RF laterally-diffused metal oxide semiconductor (LDMOS), RF BiCMOS Silicon Germanium (SiGe), RF BiCMOS Silicon Germanium Carbon (SiGeC), and Gallim Arsenide technology; gives information on RF ESD testing methodologies, RF degradation effects, and failure mechanisms for devices, circuits and systems; highlights RF ESD mixed-signal design integration of digital, analog and RF circuitry; sets out examples of RF ESD design computer aided design methodologies; covers state-of-the-art RF ESD input circuits, as well as voltage-triggered to RC-triggered ESD power clamps networks in RF technologies, as well as off-chip protection concepts. Following the authors series of books on ESD, this book will be a thorough overview of ESD in RF technology for RF semiconductor chip and ESD engineers. Device and circuit engineers working in the RF domain, and quality, reliability and failure analysis engineers will also find it a valuable reference in the rapidly growing are of RF ESD design. In addition, it will appeal to graduate students in RF microwave technology and RF circuit design.




Recent Books