Elementary Concepts of Power Electronic Drives


Book Description

Fills the gap for a concise preliminary textbook on power electronic drives, with simple illustrations and applications Presents the integration of power electronics and machines in a simple manner Discusses the principles of electric motors and power electronics in an introductory manner Discusses DC and AC drives, with an emphasis on PM drives Includes questions and homework problems with hints and case studies




Basic Principles of Power Electronics


Book Description

Power electronics became an identifiably separate area of electrical engineering with the invention of the thyristor about 30 years ago. The growing demand for controllability and conversion of electric energy has made this area increasingly important, which in turn has resulted in new device, circuit and control developments. In particular, new components, such as the GTO and power MOSFET, continue to extend power electronic technology to new applications. The technology embodied by the name "power electronics" is complex. It consists of both power level and signal level electronics, as well as thermal, mechanical, control, and protection systems. The power circuit, that part of the system actually processing energy, can be thought of as an amplifier around which is placed a closed loop control system. The goal of this book is to provide an easily understood exposition of the principles of power electronics. Common features of systems and their behavior are identified in order to facilitate understanding. Thyristor converters are distinguished and treated according to their mode of commutation. Circuits for various converters and their controls are presented, along with a description of ancillary circuits such as those required for snubbing and gate drives. Thermal and electrical properties of semiconductor power devices are discussed. The line-converter and converter-load interfaces are examined, leading to some general statements being made about energy transfer. Application areas are identified and categorized with respect to power and frequency ranges. The many tables presented in the book provide an easily used reference source.




Power Electronics, Drives, and Advanced Applications


Book Description

Concern for reliable power supply and energy-efficient system design has led to usage of power electronics-based systems, including efficient electric power conversion and power semiconductor devices. This book provides integration of complete fundamental theory, design, simulation and application of power electronics, and drives covering up-to-date subject components. It contains twenty-one chapters arranged in four sections on power semiconductor devices, basic power electronic converters, advanced power electronics converters, power supplies, electrical drives and advanced applications. Aimed at senior undergraduate and graduate students in electrical engineering and power electronics including related professionals, this book • Includes electrical drives such as DC motor, AC motor, special motor, high performance motor drives, solar, electrical/hybrid vehicle and fuel cell drives • Reviews advances in renewable energy technologies (wind, PV, hybrid power systems) and their integration • Explores topics like distributed generation, microgrid, and wireless power transfer system • Includes simulation examples using MATLAB®/Simulink and over four hundred solved, unsolved and review problems




Electric Drives


Book Description

Electric motors are widely used in both industrial equipment and consumer products, but motors are only one component in systems called drives. This text provides information on both conventional as well as converter-based drives, and discusses the closed loop control and dynamics of drives.




Introduction to Electric Power and Drive Systems


Book Description

An introduction to the analysis of electric machines, power electronic circuits, electric drive performance, and power systems This book provides students with the basic physical concepts and analysis tools needed for subsequent coursework in electric power and drive systems with a focus on Tesla’s rotating magnetic field. Organized in a flexible format, it allows instructors to select material as needed to fit their school’s power program. The first chapter covers the fundamental concepts and analytical methods that are common to power and electric drive systems. The subsequent chapters offer introductory analyses specific to electric machines, power electronic circuits, drive system performance and simulation, and power systems. In addition, this book: Provides students with an analytical base on which to build in advanced follow-on courses Examines fundamental power conversions (dc-dc, ac-dc and dc-ac), harmonics, and distortion Describes the dynamic computer simulation of a brushless dc drive to illustrate its performance with both a sinusoidal inverter voltage approximation and more realistic stator six-step drive applied voltages Includes in-chapter short problems, numerous worked examples, and end-of-chapter problems to help readers review and more fully understand each topic




Power Electronics Basics


Book Description

Power Electronics Basics: Operating Principles, Design, Formulas, and Applications provides fundamental knowledge for the analysis and design of modern power electronic devices. This concise and user-friendly resource:Explains the basic concepts and most important terms of power electronicsDescribes the power assemblies, control, and passive compon




Power Electronics and Motor Drives


Book Description

The Industrial Electronics Handbook, Second Edition combines traditional and newer, more specialized knowledge that will help industrial electronics engineers develop practical solutions for the design and implementation of high-power applications. Embracing the broad technological scope of the field, this collection explores fundamental areas, including analog and digital circuits, electronics, electromagnetic machines, signal processing, and industrial control and communications systems. It also facilitates the use of intelligent systems—such as neural networks, fuzzy systems, and evolutionary methods—in terms of a hierarchical structure that makes factory control and supervision more efficient by addressing the needs of all production components. Enhancing its value, this fully updated collection presents research and global trends as published in the IEEE Transactions on Industrial Electronics Journal, one of the largest and most respected publications in the field. Power Electronics and Motor Drives facilitates a necessary shift from low-power electronics to the high-power varieties used to control electromechanical systems and other industrial applications. This volume of the handbook: Focuses on special high-power semiconductor devices Describes various electrical machines and motors, their principles of operation, and their limitations Covers power conversion and the high-efficiency devices that perform the necessary switchover between AC and DC Explores very specialized electronic circuits for the efficient control of electric motors Details other applications of power electronics, aside from electric motors—including lighting, renewable energy conversion, and automotive electronics Addresses power electronics used in very-high-power electrical systems to transmit energy Other volumes in the set: Fundamentals of Industrial Electronics Control and Mechatronics Industrial Communication Systems Intelligent Systems







Power Electronics in Motor Drives


Book Description

This book is aimed at people who want to understand how AC inverter drives work and how they are used in industry. This book is much more about the practical design and application of drives than about the mathematical principles behind them. The key principles of power electronics are described and presented in a simple way, as are the basics of both DC and AC motors. The detailed electronics of DC and AC drive are explained, together with the theoretical background and the practical design issues such as cooling and protection. An important part of the book gives details of the features and functions often found in AC drives, and gives practical advice on how and where to use these. A wide range of drive applications are described from fresh water pumping to baggage handling systems. The practical problems of using AC drives in industry are presented, and together with the application and function descriptions should prove useful and informative.




Power Electronics


Book Description

Power Electronics: Drive Technology and Motion Control explores the principles and practices of power electronics, emphasizing drive technology and motion control. The book covers the fundamentals of electric machine transformers, drive systems, electric traction and renewable energy in an e-Mobility chapter. Supported with illustrations and worked examples, the book covers theory, real life applications, and practical/industrial applications of power electronic drive technology and motion control. This book is intended for engineers, researchers and students who are interested in advanced control of power converters and control specialists who like to explore new applications of control theory. Electronic power control is a coupling of electronic technology and applications from power engineering which rely on one another to provide cleaner electrical power, increased speed, reliability of power and accurate and efficient control of power. Includes illustrated diagrams to cover up-to-date industry applications Features in-depth worked examples to enhance understanding of power electronics theory and related practical applications Covers the fundamentals of electric machine transformers, drive systems, electric traction and renewable energy in an e-Mobility chapter