Elements of Automata Theory


Book Description

Automata theory lies at the foundation of computer science, and is vital to a theoretical understanding of how computers work and what constitutes formal methods. This treatise gives a rigorous account of the topic and illuminates its real meaning by looking at the subject in a variety of ways. The first part of the book is organised around notions of rationality and recognisability. The second part deals with relations between words realised by finite automata, which not only exemplifies the automata theory but also illustrates the variety of its methods and its fields of application. Many exercises are included, ranging from those that test the reader, to those that are technical results, to those that extend ideas presented in the text. Solutions or answers to many of these are included in the book.







Elements of Computation Theory


Book Description

The foundation of computer science is built upon the following questions: What is an algorithm? What can be computed and what cannot be computed? What does it mean for a function to be computable? How does computational power depend upon programming constructs? Which algorithms can be considered feasible? For more than 70 years, computer scientists are searching for answers to such qu- tions. Their ingenious techniques used in answering these questions form the theory of computation. Theory of computation deals with the most fundamental ideas of computer s- ence in an abstract but easily understood form. The notions and techniques employed are widely spread across various topics and are found in almost every branch of c- puter science. It has thus become more than a necessity to revisit the foundation, learn the techniques, and apply them with con?dence. Overview and Goals This book is about this solid, beautiful, and pervasive foundation of computer s- ence. It introduces the fundamental notions, models, techniques, and results that form the basic paradigms of computing. It gives an introduction to the concepts and mathematics that computer scientists of our day use to model, to argue about, and to predict the behavior of algorithms and computation. The topics chosen here have shown remarkable persistence over the years and are very much in current use.




Automata Theory and its Applications


Book Description

The theory of finite automata on finite stings, infinite strings, and trees has had a dis tinguished history. First, automata were introduced to represent idealized switching circuits augmented by unit delays. This was the period of Shannon, McCullouch and Pitts, and Howard Aiken, ending about 1950. Then in the 1950s there was the work of Kleene on representable events, of Myhill and Nerode on finite coset congruence relations on strings, of Rabin and Scott on power set automata. In the 1960s, there was the work of Btichi on automata on infinite strings and the second order theory of one successor, then Rabin's 1968 result on automata on infinite trees and the second order theory of two successors. The latter was a mystery until the introduction of forgetful determinacy games by Gurevich and Harrington in 1982. Each of these developments has successful and prospective applications in computer science. They should all be part of every computer scientist's toolbox. Suppose that we take a computer scientist's point of view. One can think of finite automata as the mathematical representation of programs that run us ing fixed finite resources. Then Btichi's SIS can be thought of as a theory of programs which run forever (like operating systems or banking systems) and are deterministic. Finally, Rabin's S2S is a theory of programs which run forever and are nondeterministic. Indeed many questions of verification can be decided in the decidable theories of these automata.




A Textbook on Automata Theory


Book Description

A Textbook on Automata Theory has been designed for students of computer science. Adopting a comprehensive approach to the subject, the book presents various concepts with adequate explanations. The logical and structured treatment of the subject promotes better understanding and assimilation. Lucid and well-structured presentation makes the book user-friendly. The book cover the curricula for M.C.A., B.E.(Computer Science) and M.Sc. (Computer Science) at various universities and gives students a strong foundation for advanced studies in the field. Key features: . A wide array of solved examples and applications . Numerous illustrations supporting theoretical inputs . Exercises at the end of each chapter for practice . Notation for describing machine models . A brief history of mathematicians and computer scientists




Automata Theory with Modern Applications


Book Description

Recent applications to biomolecular science and DNA computing have created a new audience for automata theory and formal languages. This is the only introductory book to cover such applications. It begins with a clear and readily understood exposition of the fundamentals that assumes only a background in discrete mathematics. The first five chapters give a gentle but rigorous coverage of basic ideas as well as topics not found in other texts at this level, including codes, retracts and semiretracts. Chapter 6 introduces combinatorics on words and uses it to describe a visually inspired approach to languages. The final chapter explains recently-developed language theory coming from developments in bioscience and DNA computing. With over 350 exercises (for which solutions are available), many examples and illustrations, this text will make an ideal contemporary introduction for students; others, new to the field, will welcome it for self-learning.




Introduction to Automata Theory, Languages, and Computation


Book Description

This classic book on formal languages, automata theory, and computational complexity has been updated to present theoretical concepts in a concise and straightforward manner with the increase of hands-on, practical applications. This new edition comes with Gradiance, an online assessment tool developed for computer science. Please note, Gradiance is no longer available with this book, as we no longer support this product.




Introduction to Computer Theory


Book Description

This text strikes a good balance between rigor and an intuitive approach to computer theory. Covers all the topics needed by computer scientists with a sometimes humorous approach that reviewers found "refreshing". It is easy to read and the coverage of mathematics is fairly simple so readers do not have to worry about proving theorems.




Theory Of Automata, Formal Languages And Computation (As Per Uptu Syllabus)


Book Description

This Book Is Aimed At Providing An Introduction To The Basic Models Of Computability To The Undergraduate Students. This Book Is Devoted To Finite Automata And Their Properties. Pushdown Automata Provides A Class Of Models And Enables The Analysis Of Context-Free Languages. Turing Machines Have Been Introduced And The Book Discusses Computability And Decidability. A Number Of Problems With Solutions Have Been Provided For Each Chapter. A Lot Of Exercises Have Been Given With Hints/Answers To Most Of These Tutorial Problems.




Automata, Computability and Complexity


Book Description

For upper level courses on Automata. Combining classic theory with unique applications, this crisp narrative is supported by abundant examples and clarifies key concepts by introducing important uses of techniques in real systems. Broad-ranging coverage allows instructors to easily customise course material to fit their unique requirements.