Elements of Newtonian Mechanics


Book Description

In the second edition, a number of misprints that appeared in the first edition have been corrected. In addition to this, we have made improvements based on the experience gathered in the use of the first English edition of the book in the introductory course in physics at the University of Copenhagen. A chapter introducing nonlinear dynamics has been added. The purpose of this chapter is to provide supplementary reading for the students who are interested in this area of active research, where Newtonian mechanics plays an essential role. The students who wish to dig deeper, should consult texts dedicated to the study of nonlinear dynamical systems and chaos. The literature list at the end of this book contains several references for the topic. The book still contains a one-semester (15 weeks) first university course on Newtonian mechanics. This necessarily introduces some constraints on the choice of topics and the level of mathematical sophistication expected from the reader. If one looks for discussions of technical issues, such as the physics behind various manifestations of friction, or the tensorial nature of the rotation vector, one will look in vain. The book contains what we feel are the essential aspects of Newtonian Mechanics. It is a pleasure again to thank Springer-Verlag and in particular Dr. H. J. KOisch and the staff at the Heidelberg office for helpfulness and professional collaboration.




Elements of Newtonian Mechanics


Book Description

This book is intended as a textbook for an entry-level university course in Newtonian mechanics for students of physics, astronomy, and the engineering sciences. The material has been used as a first-semester text for first-year undergraduates at the Niels Bohr Institute, which is part of the University of Copenhagen. Our way of presenting Newtonian mechanics is influenced by the writings of the late Max Born. Also, the Feynman Lectures on Physics have been an important source of inspiration. In fact, the idea for the book came when we read Section 16.1 of Volume 1 of the Feynman Lectures. Ideas from the well-known Berkeley Physics Course may also be traced in the text. All of the books quoted in the literature list have, in one way or another, served as a source for our lectures for undergraduates. It is assumed that the students already have a rudimentary knowledge of Newtonian mechanics, say at the high-school level. Some background in vectors and elementary calculus is also required, i.e., the students should know how to add vectors as well as how to differentiate and integrate elementary functions. The Appendix contains the required background for the use of vectors in Newtonian mechanics.




Elements of Newtonian Mechanics


Book Description

In the third edition a number of minor misprints that appeared in the second edition have have been corrected. Furthermore, 17 new problems have been added, at the end of chapters 6, 8, 9, 11, 12, 13, and 14. The answers to these 17 problems have not been listed in the 'Answers' section at the end of the book. This will permit the problems to be used as hand-in problems or perhaps in mid-term exams. JMK €9 PGH Copenhagen May 2000 Preface to the Second Edition In the second edition, a number of misprints that appeared in the first edition have been corrected. In addition to this, we have made improvements based on the experience gathered in the use of the first English edition of the book in the introductory course in physics at the University of Copenhagen. A chapter introducing nonlinear dynamics has been added. The purpose of this chapter is to provide supplementary reading for the students who are interested in this area of active research, where Newtonian mechanics plays an essential role. The students who wish to dig deeper, should consult texts dedicated to the study of nonlinear dynamical systems and chaos. The literature list at the end of this book contains several references for the topic.




Lecture Notes on Newtonian Mechanics


Book Description

One could make the claim that all branches of physics are basically generalizations of classical mechanics. It is also often the first course which is taught to physics students. The approach of this book is to construct an intermediate discipline between general courses of physics and analytical mechanics, using more sophisticated mathematical tools. The aim of this book is to prepare a self-consistent and compact text that is very useful for teachers as well as for independent study.




Elements of Mechanics


Book Description

The first volume in a three-part series, Elements of Mechanics provides a rigorous calculus-based introduction to classical physics. It considers diverse phenomena in a systematic manner and emphasises the development of consistent and coherent models guided by symmetry considerations and the application of general principles. Modern developments c




From Newton to Einstein


Book Description

From Newton to Einstein is a book devoted to classical mechanics. "Classical" here includes the theory of special relativity as well because, as argued in the book, it is essentially Newtonian mechanics extended to very high speeds. This information is expanded from the author's popular Q&A website, a site aimed primarily at general readers who are curious about how physics explains the workings of the world. Hence, the answers emphasize concepts over formalism, and the mathematics is kept to a minimum. Students new to physics will find discussion and quantitative calculations for areas often neglected in introductory courses (e.g. air drag and non-inertial frames). The author gives us a more intuitive approach to special relativity than normally taught in introductory courses. One chapter discusses general relativity in a completely non-mathematical way emphasizing the equivalence principle and the generalized principle of relativity; the examples in this chapter can offer a new slant on applications of classical mechanics. Another chapter is devoted to the physics of computer games, sci-fi, superheros, and super weapons for those interested in the intersection of popular culture and science. Professional scientists will find topics that they may find amusing and, in some cases, everyday applications that they had not thought of. Brief tutorials are given for essential concepts (e.g. Newton's laws) and appendices give technical details for the interested reader.




Elements of Continuum Mechanics and Thermodynamics


Book Description

This text is intended to provide a modern and integrated treatment of the foundations and applications of continuum mechanics. There is a significant increase in interest in continuum mechanics because of its relevance to microscale phenomena. In addition to being tailored for advanced undergraduate students and including numerous examples and exercises, this text also features a chapter on continuum thermodynamics, including entropy production in Newtonian viscous fluid flow and thermoelasticity. Computer solutions and examples are emphasized through the use of the symbolic mathematical computing program Mathematica®.




Problems and Solutions on Mechanics


Book Description

Newtonian mechanics : dynamics of a point mass (1001-1108) - Dynamics of a system of point masses (1109-1144) - Dynamics of rigid bodies (1145-1223) - Dynamics of deformable bodies (1224-1272) - Analytical mechanics : Lagrange's equations (2001-2027) - Small oscillations (2028-2067) - Hamilton's canonical equations (2068-2084) - Special relativity (3001-3054).




Classical Mechanics


Book Description

This upper-level undergraduate and beginning graduate textbook primarily covers the theory and application of Newtonian and Lagrangian, but also of Hamiltonian mechanics. In addition, included are elements of continuum mechanics and the accompanying classical field theory, wherein four-vector notation is introduced without explicit reference to special relativity. The author's writing style attempts to ease students through the primary and secondary results, thus building a solid foundation for understanding applications. Numerous examples illustrate the material and often present alternative approaches to the final results.




Variational Principles in Classical Mechanics


Book Description

Two dramatically different philosophical approaches to classical mechanics were proposed during the 17th - 18th centuries. Newton developed his vectorial formulation that uses time-dependent differential equations of motion to relate vector observables like force and rate of change of momentum. Euler, Lagrange, Hamilton, and Jacobi, developed powerful alternative variational formulations based on the assumption that nature follows the principle of least action. These variational formulations now play a pivotal role in science and engineering.This book introduces variational principles and their application to classical mechanics. The relative merits of the intuitive Newtonian vectorial formulation, and the more powerful variational formulations are compared. Applications to a wide variety of topics illustrate the intellectual beauty, remarkable power, and broad scope provided by use of variational principles in physics.The second edition adds discussion of the use of variational principles applied to the following topics:(1) Systems subject to initial boundary conditions(2) The hierarchy of related formulations based on action, Lagrangian, Hamiltonian, and equations of motion, to systems that involve symmetries.(3) Non-conservative systems.(4) Variable-mass systems.(5) The General Theory of Relativity.Douglas Cline is a Professor of Physics in the Department of Physics and Astronomy, University of Rochester, Rochester, New York.