The Elements of Mechanics


Book Description

The word "elements" in the title of this book does not convey the implica tion that its contents are "elementary" in the sense of "easy": it mainly means that no prerequisites are required, with the exception of some basic background in classical physics and calculus. It also signifies "devoted to the foundations". In fact, the arguments chosen are all very classical, and the formal or technical developments of this century are absent, as well as a detailed treatment of such problems as the theory of the planetary motions and other very concrete mechanical problems. This second meaning, however, is the result of the necessity of finishing this work in a reasonable amount of time rather than an a priori choice. Therefore a detailed review of the "few" results of ergodic theory, of the "many" results of statistical mechanics, of the classical theory of fields (elasticity and waves), and of quantum mechanics are also totally absent; they could constitute the subject of two additional volumes on mechanics. This book grew out of several courses on meccanica razionaie, i.e., essentially, theoretical mechanics, which I gave at the University of Rome during the years 1975-1978.







Elements of Mechanics


Book Description

The first volume in a three-part series, Elements of Mechanics provides a rigorous calculus-based introduction to classical physics. It considers diverse phenomena in a systematic manner and emphasises the development of consistent and coherent models guided by symmetry considerations and the application of general principles. Modern developments c




Elements of Continuum Mechanics and Conservation Laws


Book Description

Elements of Continuum Mechanics and Conservation Laws presents a systematization of different models in mathematical physics, a study of the structure of conservation laws, thermodynamical identities, and connection with criteria for well-posedness of the corresponding mathematical problems. The theory presented in this book stems from research carried out by the authors concerning the formulations of differential equations describing explosive deformations of metals. In such processes, elasticity equations are used in some zones, whereas hydrodynamics equations are stated in other zones. Plastic deformations appear in transition zones, which leads to residual stresses. The suggested model contains some relaxation terms which simulate these plastic deformations. Certain laws of thermodynamics are used in order to describe and study differential equations simulating the physical processes. This leads to the special formulation of differential equations using generalized thermodynamical potentials.




Elements of Theoretical Mechanics for Electronic Engineers


Book Description

Elements of Theoretical Mechanics for Electronic Engineers deals with theoretical mechanics, which is considered one of the fundamental branches of instruction essential to training an engineer. This book discusses the oscillatory motions and their counterparts in electrical circuits and radio, and provides an introduction to differential operators of vector field theory. Other topics covered include systems and functions of vectors; dynamics of a free point; vibrations and waves; and statics. Worked examples and many notes on the application of most sections of the theories to electrical developments are also provided in this text. This publication is valuable to students taking a Higher National Diploma or Diploma in Technology, as well as students in the final year of the Higher National Certificate in electrical engineering.




Elements of Newtonian Mechanics


Book Description

In the second edition, a number of misprints that appeared in the first edition have been corrected. In addition to this, we have made improvements based on the experience gathered in the use of the first English edition of the book in the introductory course in physics at the University of Copenhagen. A chapter introducing nonlinear dynamics has been added. The purpose of this chapter is to provide supplementary reading for the students who are interested in this area of active research, where Newtonian mechanics plays an essential role. The students who wish to dig deeper, should consult texts dedicated to the study of nonlinear dynamical systems and chaos. The literature list at the end of this book contains several references for the topic. The book still contains a one-semester (15 weeks) first university course on Newtonian mechanics. This necessarily introduces some constraints on the choice of topics and the level of mathematical sophistication expected from the reader. If one looks for discussions of technical issues, such as the physics behind various manifestations of friction, or the tensorial nature of the rotation vector, one will look in vain. The book contains what we feel are the essential aspects of Newtonian Mechanics. It is a pleasure again to thank Springer-Verlag and in particular Dr. H. J. KOisch and the staff at the Heidelberg office for helpfulness and professional collaboration.




Essential Classical Mechanics for Device Physics


Book Description

Continued advances in the precision manufacturing of new structures at the nanometer scale have provided unique opportunities for device physics. This book sets out to summarize those elements of classical mechanics most applicable for scientists and engineers studying device physics. Supplementary MATLABĀ® materials are available for all figures generated numerically.




Analytical Elements of Mechanics


Book Description

Analytical Elements of Mechanics, Volume 1, is the first of two volumes intended for use in courses in classical mechanics. The books aim to provide students and teachers with a text consistent in content and format with the author's ideas regarding the subject matter and teaching of mechanics, and to disseminate these ideas. The book opens with a detailed exposition of vector algebra, and no prior knowledge of this subject is required. This is followed by a chapter on the topic of mass centers, which is presented as a logical extension of concepts introduced in connection with centroids. A theory of moments and couples is constructed without reference to forces, these being mentioned only in illustrative examples. This is done because it eventually becomes necessary to apply the theory to systems of vectors which are not forces, such as momenta and impulses. Equilibrium is discussed in the final chapter, preceded by extended examination of the concept of force.




Elements of Classical and Quantum Integrable Systems


Book Description

Integrable models have a fascinating history with many important discoveries that dates back to the famous Kepler problem of planetary motion. Nowadays it is well recognised that integrable systems play a ubiquitous role in many research areas ranging from quantum field theory, string theory, solvable models of statistical mechanics, black hole physics, quantum chaos and the AdS/CFT correspondence, to pure mathematics, such as representation theory, harmonic analysis, random matrix theory and complex geometry. Starting with the Liouville theorem and finite-dimensional integrable models, this book covers the basic concepts of integrability including elements of the modern geometric approach based on Poisson reduction, classical and quantum factorised scattering and various incarnations of the Bethe Ansatz. Applications of integrability methods are illustrated in vast detail on the concrete examples of the Calogero-Moser-Sutherland and Ruijsenaars-Schneider models, the Heisenberg spin chain and the one-dimensional Bose gas interacting via a delta-function potential. This book has intermediate and advanced topics with details to make them clearly comprehensible.