Elliptic Cohomology


Book Description

Elliptic cohomology is an extremely beautiful theory with both geometric and arithmetic aspects. The former is explained by the fact that the theory is a quotient of oriented cobordism localised away from 2, the latter by the fact that the coefficients coincide with a ring of modular forms. The aim of the book is to construct this cohomology theory, and evaluate it on classifying spaces BG of finite groups G. This class of spaces is important, since (using ideas borrowed from `Monstrous Moonshine') it is possible to give a bundle-theoretic definition of EU-(BG). Concluding chapters also discuss variants, generalisations and potential applications.




Elliptic Cohomology


Book Description

First collection of papers on elliptic cohomology in twenty years; represents the diversity of topics within this important field.




Rational Points on Elliptic Curves


Book Description

The theory of elliptic curves involves a blend of algebra, geometry, analysis, and number theory. This book stresses this interplay as it develops the basic theory, providing an opportunity for readers to appreciate the unity of modern mathematics. The book’s accessibility, the informal writing style, and a wealth of exercises make it an ideal introduction for those interested in learning about Diophantine equations and arithmetic geometry.




Global Homotopy Theory


Book Description

A comprehensive, self-contained approach to global equivariant homotopy theory, with many detailed examples and sample calculations.




Algebraic Topology


Book Description

The 2007 Abel Symposium took place at the University of Oslo in August 2007. The goal of the symposium was to bring together mathematicians whose research efforts have led to recent advances in algebraic geometry, algebraic K-theory, algebraic topology, and mathematical physics. A common theme of this symposium was the development of new perspectives and new constructions with a categorical flavor. As the lectures at the symposium and the papers of this volume demonstrate, these perspectives and constructions have enabled a broadening of vistas, a synergy between once-differentiated subjects, and solutions to mathematical problems both old and new.




Galois Cohomology of Elliptic Curves


Book Description

The genesis of these notes was a series of four lectures given by the first author at the Tata Institute of Fundamental Research. It evolved into a joint project and contains many improvements and extensions on the material covered in the original lectures. Let $F$ be a finite extension of $q$, and $E$ an elliptic curve defined over $F$. The fundamental idea of the Iwasawa theory of elliptic curves, which grew out of Iwasawa's basic work on the ideal class groups of cyclotomic fields, is to study deep arithmetic questions about $E$ over $F$ via the study of coarser questions about the arithmetic of $E$ over various infinite extensions of $F$. At present, we only know how to formulate this Iwasawa theory when the infinite extension is a $p$-adic Lie extension for a fixed prime number $p$. These notes will mainly discuss the simplest non-trivial example of the Iwasawa theory of $E$ over the cyclotomic $zp$-extension of $F$. However, the authors also make some comments about the Iwasawa theory of $E$ over the field obtained by adjoining all $p$-power division points on $E$ to $F$. They discuss in detail a number of numerical examples, which illustrate the general theory beautifully. In addition, they outline some of the basic results in Galois cohomology which are used repeatedly in the study of the relevant Iwasawa modules. The only changes made to the original notes: The authors take modest account of the considerable progress which has been made in non-commutative Iwasawa theory in the intervening years. They also include a short section on the deep theorems of Kato on the cyclotomic Iwasawa theory of elliptic curves.




Homotopy Theory: Tools and Applications


Book Description

This volume contains the proceedings of the conference Homotopy Theory: Tools and Applications, in honor of Paul Goerss's 60th birthday, held from July 17–21, 2017, at the University of Illinois at Urbana-Champaign, Urbana, IL. The articles cover a variety of topics spanning the current research frontier of homotopy theory. This includes articles concerning both computations and the formal theory of chromatic homotopy, different aspects of equivariant homotopy theory and K-theory, as well as articles concerned with structured ring spectra, cyclotomic spectra associated to perfectoid fields, and the theory of higher homotopy operations.




Superstrings, Geometry, Topology, and $C^*$-algebras


Book Description

This volume contains the proceedings of an NSF-CBMS Conference held at Texas Christian University in Fort Worth, Texas, May 18-22, 2009. The papers, written especially for this volume by well-known mathematicians and mathematical physicists, are an outgrowth of the talks presented at the conference. Topics examined are highly interdisciplinary and include, among many other things, recent results on D-brane charges in $K$-homology and twisted $K$-homology, Yang-Mills gauge theory and connections with non-commutative geometry, Landau-Ginzburg models, $C^*$-algebraic non-commutative geometry and ties to quantum physics and topology, the rational homotopy type of the group of unitary elements in an Azumaya algebra, and functoriality properties in the theory of $C^*$-crossed products and fixed point algebras for proper actions. An introduction, written by Jonathan Rosenberg, provides an instructive overview describing common themes and how the various papers in the volume are interrelated and fit together. The rich diversity of papers appearing in the volume demonstrates the current interplay between superstring theory, geometry/topology, and non-commutative geometry. The book will be of interest to graduate students, mathematicians, mathematical physicists, and researchers working in these areas.




Homotopy Methods in Algebraic Topology


Book Description

This volume presents the proceedings from the AMS-IMS-SIAM Summer Research Conference on Homotopy Methods in Algebraic Topology held at the University of Colorado (Boulder). The conference coincided with the sixtieth birthday of J. Peter May. An article is included reflecting his wide-ranging and influential contributions to the subject area. Other articles in the book discuss the ordinary, elliptic and real-oriented Adams spectral sequences, mapping class groups, configuration spaces, extended powers, operads, the telescope conjecture, $p$-compact groups, algebraic K theory, stable and unstable splittings, the calculus of functors, the $E_{\infty}$ tensor product, and equivariant cohomology theories. The book offers a compendious source on modern aspects of homotopy theoretic methods in many algebraic settings.




Stable Homotopy and Generalised Homology


Book Description

J. Frank Adams, the founder of stable homotopy theory, gave a lecture series at the University of Chicago in 1967, 1970, and 1971, the well-written notes of which are published in this classic in algebraic topology. The three series focused on Novikov's work on operations in complex cobordism, Quillen's work on formal groups and complex cobordism, and stable homotopy and generalized homology. Adams's exposition of the first two topics played a vital role in setting the stage for modern work on periodicity phenomena in stable homotopy theory. His exposition on the third topic occupies the bulk of the book and gives his definitive treatment of the Adams spectral sequence along with many detailed examples and calculations in KU-theory that help give a feel for the subject.