Emergent Information Technologies and Enabling Policies for Counter-Terrorism


Book Description

Explores both counter-terrorism and enabling policy dimensions of emerging information technologies in national security After the September 11th attacks, "connecting the dots" has become the watchword for using information and intelligence to protect the United States from future terrorist attacks. Advanced and emerging information technologies offer key assets in confronting a secretive, asymmetric, and networked enemy. Yet, in a free and open society, policies must ensure that these powerful technologies are used responsibly, and that privacy and civil liberties remain protected. Emergent Information Technologies and Enabling Policies for Counter-Terrorism provides a unique, integrated treatment of cutting-edge counter-terrorism technologies and their corresponding policy options. Featuring contributions from nationally recognized authorities and experts, this book brings together a diverse knowledge base for those charged with protecting our nation from terrorist attacks while preserving our civil liberties. Topics covered include: Counter-terrorism modeling Quantitative and computational social science Signal processing and information management techniques Semantic Web and knowledge management technologies Information and intelligence sharing technologies Text/data processing and language translation technologies Social network analysis Legal standards for data mining Potential structures for enabling policies Technical system design to support policy Countering terrorism in today's world requires innovative technologies and corresponding creative policies; the two cannot be practically and realistically addressed separately. Emergent Information Technologies and Enabling Policies for Counter-Terrorism offers a comprehensive examination of both areas, serving as an essential resource for students, practitioners, researchers, developers, and decision-makers.




Rethinking Public Strategy


Book Description

Strategy is vital to effective and efficient public service delivery as well as successful governance and leadership. This new text provides a concise yet systematic overview of the achievements, downfalls and complexities of public strategy in today's globalized and often market-driven world. It describes the place of strategy in civic societies whose citizens are more interconnected and vocal than ever. It shows that successful strategic planning goes well beyond problem-solving to developing adaptable plans that can evolve as requirements and circumstances change. And it explains why muddling through simply won't work. Emphasizing the importance of applying a variety of techniques to the process of strategy-creation, Rethinking Public Strategy reassesses the key factors that can deliver significant improvements in public services and build public value. It looks at why public strategy is distinctive, as well as the principles it has in common with the corporate domain. This text includes numerous case studies from around the globe – from South Africa to Singapore, the USA to Germany, and from China to the Czech Republic – that ground the exposition in real experience. Based on state-of-the-art research by two expert practitioners in the field, it offers an essential guide to the art of strategy in the contemporary public sector, and encourages readers to evaluate critically the various approaches to strategy.




Beautiful Data


Book Description

In this insightful book, you'll learn from the best data practitioners in the field just how wide-ranging -- and beautiful -- working with data can be. Join 39 contributors as they explain how they developed simple and elegant solutions on projects ranging from the Mars lander to a Radiohead video. With Beautiful Data, you will: Explore the opportunities and challenges involved in working with the vast number of datasets made available by the Web Learn how to visualize trends in urban crime, using maps and data mashups Discover the challenges of designing a data processing system that works within the constraints of space travel Learn how crowdsourcing and transparency have combined to advance the state of drug research Understand how new data can automatically trigger alerts when it matches or overlaps pre-existing data Learn about the massive infrastructure required to create, capture, and process DNA data That's only small sample of what you'll find in Beautiful Data. For anyone who handles data, this is a truly fascinating book. Contributors include: Nathan Yau Jonathan Follett and Matt Holm J.M. Hughes Raghu Ramakrishnan, Brian Cooper, and Utkarsh Srivastava Jeff Hammerbacher Jason Dykes and Jo Wood Jeff Jonas and Lisa Sokol Jud Valeski Alon Halevy and Jayant Madhavan Aaron Koblin with Valdean Klump Michal Migurski Jeff Heer Coco Krumme Peter Norvig Matt Wood and Ben Blackburne Jean-Claude Bradley, Rajarshi Guha, Andrew Lang, Pierre Lindenbaum, Cameron Neylon, Antony Williams, and Egon Willighagen Lukas Biewald and Brendan O'Connor Hadley Wickham, Deborah Swayne, and David Poole Andrew Gelman, Jonathan P. Kastellec, and Yair Ghitza Toby Segaran




Clustering


Book Description

This is the first book to take a truly comprehensive look at clustering. It begins with an introduction to cluster analysis and goes on to explore: proximity measures; hierarchical clustering; partition clustering; neural network-based clustering; kernel-based clustering; sequential data clustering; large-scale data clustering; data visualization and high-dimensional data clustering; and cluster validation. The authors assume no previous background in clustering and their generous inclusion of examples and references help make the subject matter comprehensible for readers of varying levels and backgrounds.




Reinforcement Learning and Approximate Dynamic Programming for Feedback Control


Book Description

Reinforcement learning (RL) and adaptive dynamic programming (ADP) has been one of the most critical research fields in science and engineering for modern complex systems. This book describes the latest RL and ADP techniques for decision and control in human engineered systems, covering both single player decision and control and multi-player games. Edited by the pioneers of RL and ADP research, the book brings together ideas and methods from many fields and provides an important and timely guidance on controlling a wide variety of systems, such as robots, industrial processes, and economic decision-making.




Complex-Valued Neural Networks


Book Description

Presents the latest advances in complex-valued neural networks by demonstrating the theory in a wide range of applications Complex-valued neural networks is a rapidly developing neural network framework that utilizes complex arithmetic, exhibiting specific characteristics in its learning, self-organizing, and processing dynamics. They are highly suitable for processing complex amplitude, composed of amplitude and phase, which is one of the core concepts in physical systems to deal with electromagnetic, light, sonic/ultrasonic waves as well as quantum waves, namely, electron and superconducting waves. This fact is a critical advantage in practical applications in diverse fields of engineering, where signals are routinely analyzed and processed in time/space, frequency, and phase domains. Complex-Valued Neural Networks: Advances and Applications covers cutting-edge topics and applications surrounding this timely subject. Demonstrating advanced theories with a wide range of applications, including communication systems, image processing systems, and brain-computer interfaces, this text offers comprehensive coverage of: Conventional complex-valued neural networks Quaternionic neural networks Clifford-algebraic neural networks Presented by international experts in the field, Complex-Valued Neural Networks: Advances and Applications is ideal for advanced-level computational intelligence theorists, electromagnetic theorists, and mathematicians interested in computational intelligence, artificial intelligence, machine learning theories, and algorithms.




Simulation and Computational Red Teaming for Problem Solving


Book Description

An authoritative guide to computer simulation grounded in a multi-disciplinary approach for solving complex problems Simulation and Computational Red Teaming for Problem Solving offers a review of computer simulation that is grounded in a multi-disciplinary approach. The authors present the theoretical foundations of simulation and modeling paradigms from the perspective of an analyst. The book provides the fundamental background information needed for designing and developing consistent and useful simulations. In addition to this basic information, the authors explore several advanced topics. The book’s advanced topics demonstrate how modern artificial intelligence and computational intelligence concepts and techniques can be combined with various simulation paradigms for solving complex and critical problems. Authors examine the concept of Computational Red Teaming to reveal how the combined fundamentals and advanced techniques are used successfully for solving and testing complex real-world problems. This important book: • Demonstrates how computer simulation and Computational Red Teaming support each other for solving complex problems • Describes the main approaches to modeling real-world phenomena and embedding these models into computer simulations • Explores how a number of advanced artificial intelligence and computational intelligence concepts are used in conjunction with the fundamental aspects of simulation Written for researchers and students in the computational modelling and data analysis fields, Simulation and Computational Red Teaming for Problem Solving covers the foundation and the standard elements of the process of building a simulation and explores the simulation topic with a modern research approach.




Biometrics


Book Description

Edited by a panel of experts, this book fills a gap in the existing literature by comprehensively covering system, processing, and application aspects of biometrics, based on a wide variety of biometric traits. The book provides an extensive survey of biometrics theory, methods,and applications, making it an indispensable source of information for researchers, security experts, policy makers, engineers, practitioners, and graduate students. The book's wide and in-depth coverage of biometrics enables readers to build a strong, fundamental understanding of theory and methods, and provides a foundation for solutions to many of today’s most interesting and challenging biometric problems. Biometric traits covered: Face, Fingerprint, Iris, Gait, Hand Geometry, Signature, Electrocardiogram (ECG), Electroencephalogram (EEG), physiological biometrics. Theory, Methods and Applications covered: Multilinear Discriminant Analysis, Neural Networks for biometrics, classifier design, biometric fusion, Event-Related Potentials, person-specific characteristic feature selection, image and video-based face, recognition/verification, near-infrared face recognition, elastic graph matching, super-resolution of facial images, multimodal solutions, 3D approaches to biometrics, facial aging models for recognition, information theory approaches to biometrics, biologically-inspired methods, biometric encryption, decision-making support in biometric systems, privacy in biometrics.




Computational Intelligence and Feature Selection


Book Description

The rough and fuzzy set approaches presented here open up many new frontiers for continued research and development Computational Intelligence and Feature Selection provides readers with the background and fundamental ideas behind Feature Selection (FS), with an emphasis on techniques based on rough and fuzzy sets. For readers who are less familiar with the subject, the book begins with an introduction to fuzzy set theory and fuzzy-rough set theory. Building on this foundation, the book provides: A critical review of FS methods, with particular emphasis on their current limitations Program files implementing major algorithms, together with the necessary instructions and datasets, available on a related Web site Coverage of the background and fundamental ideas behind FS A systematic presentation of the leading methods reviewed in a consistent algorithmic framework Real-world applications with worked examples that illustrate the power and efficacy of the FS approaches covered An investigation of the associated areas of FS, including rule induction and clustering methods using hybridizations of fuzzy and rough set theories Computational Intelligence and Feature Selection is an ideal resource for advanced undergraduates, postgraduates, researchers, and professional engineers. However, its straightforward presentation of the underlying concepts makes the book meaningful to specialists and nonspecialists alike.




Fundamentals of Computational Intelligence


Book Description

Provides an in-depth and even treatment of the three pillars of computational intelligence and how they relate to one another This book covers the three fundamental topics that form the basis of computational intelligence: neural networks, fuzzy systems, and evolutionary computation. The text focuses on inspiration, design, theory, and practical aspects of implementing procedures to solve real-world problems. While other books in the three fields that comprise computational intelligence are written by specialists in one discipline, this book is co-written by current former Editor-in-Chief of IEEE Transactions on Neural Networks and Learning Systems, a former Editor-in-Chief of IEEE Transactions on Fuzzy Systems, and the founding Editor-in-Chief of IEEE Transactions on Evolutionary Computation. The coverage across the three topics is both uniform and consistent in style and notation. Discusses single-layer and multilayer neural networks, radial-basis function networks, and recurrent neural networks Covers fuzzy set theory, fuzzy relations, fuzzy logic interference, fuzzy clustering and classification, fuzzy measures and fuzzy integrals Examines evolutionary optimization, evolutionary learning and problem solving, and collective intelligence Includes end-of-chapter practice problems that will help readers apply methods and techniques to real-world problems Fundamentals of Computational intelligence is written for advanced undergraduates, graduate students, and practitioners in electrical and computer engineering, computer science, and other engineering disciplines.