Emerging Roles of Long Noncoding RNAs in Neurological Diseases and Metabolic Disorders


Book Description

Long noncoding RNAs (lncRNAs) are a new class of transcripts that are in general longer than 200 nucleotides and that have no protein-coding potential. The vast majority of vertebrate genomes encode diverse and complex lncRNAs that play regulatory roles at almost every step of gene expression. Recently, increasing evidence has implicated lncRNAs in the pathogenesis of various human diseases. The purpose of the Research Topic, "Emerging roles of long noncoding RNAs in neurological diseases and metabolic disorders", is to bring together leading researchers in the field who, through contributing to an organized and comprehensive collection of peer-reviewed articles, provide a broad perspective on the latest advances in the field. A number of interesting and cutting-edge areas will be covered as below, but this list is not exclusive: - The methodologies and technologies of identifying and studying lncRNAs - LncRNAs in gene-specific transcription - LncRNAs in epigenetic regulation - LncRNAs in post-transcriptional regulation - LncRNAs in disease - Mapping of noncoding single nucleotide polymorphisms associated with disease.




Renal Fibrosis: Mechanisms and Therapies


Book Description

This book systemically presents the latest research on renal fibrosis, covering all the major topics in the field, including the possible mechanisms, biomarkers, and strategies for prevention and treatment of chronic kidney disease (CKD). Due to its high prevalence, CKD represents a huge global economic and social burden. Irrespective of the initial causes, CKD progresses to end stage kidney disease (ESKD) due to renal fibrosis, which is characterized by glomerulosclerosis, tubule atrophy and atresia, and the excessive accumulation of extracellular matrix (ECM) in the kidney. Unfortunately, an estimated 1%-2% of the adult population living with CKD will need renal replacement therapy at some point as a result of ESKD. As such, strategies for preventing or slowing CKD progression to ESKD are of utmost importance, and studies aiming to understand the mechanisms of renal fibrosis have been the focus of intensive research. Recently, novel insights into the pathophysiological processes have furthered our understanding of the pathogenesis of renal fibrosis, and more importantly, promoted studies on the early diagnosis and treatment of CKD. This book draws lessons from the extensive, state-of-the-art research in this field, elaborating the new theories and new techniques to offer readers a detailed and comprehensive understanding of renal fibrosis and as well as inspiration for future research directions.




Long Non Coding RNA Biology


Book Description

This contributed volume offers a comprehensive and detailed overview of the various aspects of long non-coding RNAs and discusses their emerging significance. Written by leading experts in the field, it motivates young researchers around the globe, and offers graduate and postgraduate students fascinating insights into genes and their regulation in eukaryotes and higher organisms.




Cancer Genomics


Book Description

The discovery of microRNA (miRNA) involvement in cancer a decade ago, and the more recent findings of long non-coding RNAs in human diseases, challenged the long-standing view that RNAs without protein-coding potential are simply “junk” transcription within the human genome. These findings evidently changed the dogma that “DNA makes RNA makes protein” by showing that RNAs themselves can be essential regulators of cellular function and play key roles in cancer development. MiRNAs are evolutionarily conserved short single-stranded transcripts of 19–24 nucleotides in length. They do not code for proteins, but change the final output of protein-coding genes by regulating their transcriptional and/or translation process. Ultraconserved genes (UCGs) are non-coding RNAs with longer length (>200bp) that are transcribed from the ultraconserved genomic region. Both miRNAs and UCGs are located within cancer-associated genomic regions (CAGRs) and can act as tumor suppressors or oncogenes. In this chapter, we present principles and concepts that have been identified over the last decade with respect to our understanding of the function of non-coding RNAs, and summarize recent findings on the role of miRNAs and UCGs in cancer development. Finally, we will conclude by discussing the translational potential of this knowledge into clinical settings such as cancer diagnosis, prognosis and treatment.




Long Non-Coding RNAs in Cancer


Book Description

This volume presents techniques needed for the study of long non-coding RNAs (lncRNAs) in cancer from their identification to functional characterization. Chapters guide readers through identification of lncRNA expression signatures in cancer tissue or liquid biopsies by RNAseq, single Cell RNAseq, Phospho RNAseq or Nanopore Sequencing techniques; validation of lncRNA signatures by Real time PCR, digital PCR or in situ hybridization; and functional analysis by siRNA or CRISPR based methods for lncRNA silencing or overexpression. Lipid based nanoparticles for delivery of siRNAs in vivo, lncRNA-protein interactions, viral lncRNAs and circRNAs are also treated in this volume. Written in the format of the highly successful Methods in Molecular Biology series, each chapter includes an introduction to the topic, lists necessary materials and reagents, includes tips on troubleshooting and known pitfalls, and step-by-step, readily reproducible protocols. Authoritative and practical, Long Non-Coding RNAs in Cancer aims to provide a collection of laboratory protocols, bioinformatic pipelines, and review chapters to further research in this vital field.




Machine Learning in Radiation Oncology


Book Description

​This book provides a complete overview of the role of machine learning in radiation oncology and medical physics, covering basic theory, methods, and a variety of applications in medical physics and radiotherapy. An introductory section explains machine learning, reviews supervised and unsupervised learning methods, discusses performance evaluation, and summarizes potential applications in radiation oncology. Detailed individual sections are then devoted to the use of machine learning in quality assurance; computer-aided detection, including treatment planning and contouring; image-guided radiotherapy; respiratory motion management; and treatment response modeling and outcome prediction. The book will be invaluable for students and residents in medical physics and radiation oncology and will also appeal to more experienced practitioners and researchers and members of applied machine learning communities.







Polyglutamine Disorders


Book Description

This book provides a cutting-edge review of polyglutamine disorders. It primarily focuses on two main aspects: (1) the mechanisms underlying the pathologies’ development and progression, and (2) the therapeutic strategies that are currently being explored to stop or delay disease progression. Polyglutamine (polyQ) disorders are a group of inherited neurodegenerative diseases with a fatal outcome that are caused by an abnormal expansion of a coding trinucleotide repeat (CAG), which is then translated in an abnormal protein with an elongated glutamine tract (Q). To date, nine polyQ disorders have been identified and described: dentatorubral-pallidoluysian atrophy (DRPLA); Huntington’s disease (HD); spinal–bulbar muscular atrophy (SBMA); and six spinocerebellar ataxias (SCA 1, 2, 3, 6, 7, and 17). The genetic basis of polyQ disorders is well established and described, and despite important advances that have opened up the possibility of generating genetic models of the disease, the mechanisms that cause neuronal degeneration are still largely unknown and there is currently no treatment available for these disorders. Further, it is believed that the different polyQ may share some mechanisms and pathways contributing to neurodegeneration and disease progression.




MicroRNAs in Diseases and Disorders


Book Description

From pathology to treatment, MicroRNAs in Diseases and Disorders highlights the role of microRNAs (miRNAs) in the development and progression of a variety of diseases, including cancer, neurological disease, endocrine disease and autoimmune disease, and underscores the utilization of miRNA targets in the treatment of these conditions. Providing a comprehensive account, this book also includes the identification of miRNAs as diagnostic and prognostic biomarkers for disease, as well as evaluates translational value from clinical trials using synthesized and functionalized miRNA mimics and inhibitors. With a global contribution list and chapters from leading experts across the field, MicroRNAs in Diseases and Disorders is an invaluable reference to miRNA researchers and health professionals in a variety of disease areas in government, academia and industry. The book will also appeal to pharmaceutical and medicinal chemists with an interest in miRNA targeting therapeutics, as well as to advanced students in chemical biology and drug discovery.