Emerging Technologies In Biophysical Sciences: A World Scientific Reference (In 3 Volumes)


Book Description

Volume 1:Biofabrication aims to produce artificially manufactured tissues and organs, potentially revolutionizing conventional paradigm of clinical practice in treating diseases and extending the life span and quality of human beings. In this volume, we invite notable experts in the field of biofabrication and biomanufacturing to summarize recent rapid progress in this field from multifaceted aspects covering biofabrication techniques and building materials such as scaffold and living cells. Specifically, a focus is placed on a variety of techniques derived from 3D bioprinting and bioassembly strategies, such as acoustic assembly and electrofabrication. Moreover, principles and strategies for choosing hydrogels and polymers for biofabrication are also heavily discussed. Overall, this book creates a good opportunity for undergraduate and postgraduate students as well as bioengineers and medical researchers who wish to gain a fundamental understanding of current status and future trends in biofabrication and biomanufacturing.Volume 2:Infertility has become a significant psychosocial burden affecting the lives of couples who cannot reproduce naturally. Advanced reproductive technologies (ARTs) are being developed to treat infertility. This handbook explores significant development of ARTs for fertility testing, selection of sperm, oocyte and embryo, reproductive monitors, automation in embryology, and fertility preservation. This volume provides a comprehensive overview of the myriad of emerging technologies and systems that are being utilized or will be utilized in near future in reproductive clinics. Overall this book creates a good opportunity for undergraduate and postgraduate students as well as scientists and medical researchers who wish to gain fundamental understanding of current status and future trends in fertility and reproductive medicine.Volume 3:Healthcare industry has a notable paradigm transition from centralized care to the point-of-care (POC). During this metamorphosis, a number of new technologies and strategies have been adapted to the current practice, addressing the existing challenges in the fields of medicine and biology. All the efforts aim to improve the clinical management and the effectiveness and quality of care. In particular, diagnostics has pivotal roles in guiding clinical management for the most effective treatment to control and cure the disease. In contrast to the existing diagnostic strategies employing bulky-sized tools, expensive infrastructure, laborious protocols, and lengthy processing steps, the contribution of biosensors to current healthcare system, especially to diagnostics, is paramount. The unprecedented and admirable characteristics of biosensing strategies have expanded our knowledge on medicine and biology by harmonizing materials science, chemistry, physics, and engineering. We believe that biosensors applied to disease diagnostics will not only garner more attention in clinical research to decipher disease biology and mechanism, and also, stimulate innovative perspectives in artificial intelligence (AI) and internet of things (IoT) synergistically, thereby their more facile adaptation to daily-use. Overall this book creates a good opportunity for undergraduate and postgraduate students as well as scientists and medical researchers who wish to gain fundamental understanding of current status and future trends in diagnostic technologies.




Emerging Technologies in Biophysical Sciences


Book Description

"Volume 1: Biofabrication aims to produce artificially manufactured tissues and organs, potentially revolutionizing conventional paradigm of clinical practice in treating diseases and extending the life span and quality of human beings. In this volume, we invite notable experts in the field of biofabrication and biomanufacturing to summarize recent rapid progress in this field from multifaceted aspects covering biofabrication techniques and building materials such as scaffold and living cells. Specifically, a focus is placed on a variety of techniques derived from 3D bioprinting and bioassembly strategies, such as acoustic assembly and electrofabrication. Moreover, principles and strategies for choosing hydrogels and polymers for biofabrication are also heavily discussed. Overall, this book creates a good opportunity for undergraduate and postgraduate students as well as bioengineers and medical researchers who wish to gain a fundamental understanding of current status and future trends in biofabrication and biomanufacturing. Volume 2: Infertility has become a significant clinical condition and about 15% couples cannot reproduce naturally. Advanced reproductive technologies (ARTs) are being developed to treat infertility. This handbook explores significant development of ARTs for fertility testing, selection of sperm, oocyte and embryo, reproductive monitors, automation in embryology, and fertility preservation. This volume provides a comprehensive overview of the myriad emerging technologies and systems that are being utilized or will be utilized in near future in reproductive clinics. Overall this book creates a good opportunity for undergraduate and postgraduate students as well as scientists and medical researchers who wish to gain fundamental understanding of current status and future trends trends in fertility reproductive medicine. Volume 3: Healthcare industry has a notable paradigm transition from centralized care to the point-of-care (POC). During this metamorphosis, a number of new technologies and strategies have been adapted to the current practice, addressing the existing challenges in the fields of medicine and biology. All the efforts aim to improve the clinical management and the effectiveness and quality of care. In particular, diagnostics has pivotal roles in guiding clinical management for the most effective treatment to control and cure the disease. In contrast to the existing diagnostic strategies employing bulky-sized tools, expensive infrastructure, laborious protocols, and lengthy processing steps, the contribution of biosensors to current healthcare system, especially to diagnostics, is paramount. The unprecedented and admirable characteristics of biosensing strategies have expanded our knowledge on medicine and biology by harmonizing materials science, chemistry, physics, and engineering. We believe that biosensors applied in disease diagnostics will not only garner more attention in clinical research to decipher disease biology and mechanism, and also, stimulate innovative perspectives in artificial intelligence and internet of things (IoT) synergistically, thereby their more facile adaptation to daily-use"--




Surface Engineering of Graphene and Graphene Quantum Dots for Industrial and Medical Applications


Book Description

This book explores the synthesis, characterization, and applications of graphene and its derivatives. It covers advancements in improving graphene quality, surface engineering methods, and increasing material functionality. The topics covered include functionalized graphene, graphene quantum dots, novel device fabrication approaches, and diverse applications. The book also investigates the fundamental principles of characterizing graphene and its derivatives, along with electronic structures, theoretical investigations, and computational analyses relevant to their applications, synthesis, and properties. The chapters are organized to cover these topics, starting with a general overview of surface chemistry and its concepts for surface engineering of graphene, the fundamental properties of graphene and its derivatives, their synthesis, and applications in numerous fields, and concludes with a future perspective. Significantly, for the first time, both industrial and medical applications are gathered in one book, enabling us to discuss the confrontation of medical and industrial applications of graphene and graphene quantum dots.







Introduction to Bioengineering


Book Description

Bioengineering is attracting many high quality students. This invaluable book has been written for beginning students of bioengineering, and is aimed at instilling a sense of engineering in them.Engineering is invention and designing things that do not exist in nature for the benefit of humanity. Invention can be taught by making inventive thinking a conscious part of our daily life. This is the approach taken by the authors of this book. Each author discusses an ongoing project, and gives a sample of a professional publication. Students are asked to work through a sequence of assignments and write a report. Almost everybody soon realizes that more scientific knowledge is needed, and a strong motivation for the study of science is generated. The teaching of inventive thinking is a new trend in engineering education. Bioengineering is a good field with which to begin this revolution in engineering education, because it is a youthful, developing interdisciplinary field.




An Introduction to Biocomposites


Book Description

Many years of cumulative research has been conducted on the usage of fiber-reinforced composites for biomedical application, but no one source exists where this topic is dealt with systematically. This book addresses polymer composites applied to bioengineering in a comprehensive manner.For potential applications to be successful, full advantage must be taken of the materials properties and the manufacturing techniques to meet the needs of biomedical application. This book focuses on fiber-based composites applied to bioengineering. It addresses three main areas. First, it presents a comprehensive survey of biocomposites from the existing literature in various medical applications, paying particular attention to hard-tissue-related implants. Second, mechanical designs and manufacturing aspects of various fibrous polymer matrix composites are described. The third area concerns examples of the design and development of several medical devices and implants using polymer composites.Chapter 1: Introduction (288 KB)




Emerging Therapeutic Ultrasound


Book Description

With contributions by internationally re-knowned authorities and experts in the field of ultrasonic imaging, this book provides comprehensive reviews on basic physical principles and applications of emerging and rapidly developing therapeutic techniques.In specific, reviews of mechanisms for bioeffects of ultrasound relevant to therapeutic applications, high intensity focused ultrasound and its application in surgery, ultrasound assisted target drug and gene delivery, as well as transdermal drug delivery are discussed.The book will be a useful reference source for graduate students, academics and researchers.




Science for Environmental Protection


Book Description

In anticipation of future environmental science and engineering challenges and technologic advances, EPA asked the National Research Council (NRC) to assess the overall capabilities of the agency to develop, obtain, and use the best available scientific and technologic information and tools to meet persistent, emerging, and future mission challenges and opportunities. Although the committee cannot predict with certainty what new environmental problems EPA will face in the next 10 years or more, it worked to identify some of the common drivers and common characteristics of problems that are likely to occur. Tensions inherent to the structure of EPA's work contribute to the current and persistent challenges faced by the agency, and meeting those challenges will require development of leading-edge scientific methods, tools, and technologies, and a more deliberate approach to systems thinking and interdisciplinary science. Science for Environmental Protection: The Road Ahead outlines a framework for building science for environmental protection in the 21st century and identified key areas where enhanced leadership and capacity can strengthen the agency's abilities to address current and emerging environmental challenges as well as take advantage of new tools and technologies to address them. The foundation of EPA science is strong, but the agency needs to continue to address numerous present and future challenges if it is to maintain its science leadership and meet its expanding mandates.




Encyclopedia Of Medical Robotics, The (In 4 Volumes)


Book Description

The Encyclopedia of Medical Robotics combines contributions in four distinct areas of Medical robotics, namely: Minimally Invasive Surgical Robotics, Micro and Nano Robotics in Medicine, Image-guided Surgical Procedures and Interventions, and Rehabilitation Robotics. The volume on Minimally Invasive Surgical Robotics focuses on robotic technologies geared towards challenges and opportunities in minimally invasive surgery and the research, design, implementation and clinical use of minimally invasive robotic systems. The volume on Micro and Nano robotics in Medicine is dedicated to research activities in an area of emerging interdisciplinary technology that is raising new scientific challenges and promising revolutionary advancement in applications such as medicine and biology. The size and range of these systems are at or below the micrometer scale and comprise assemblies of micro and nanoscale components. The volume on Image-guided Surgical Procedures and Interventions focuses primarily on the use of image guidance during surgical procedures and the challenges posed by various imaging environments and how they related to the design and development of robotic systems as well as their clinical applications. This volume also has significant contributions from the clinical viewpoint on some of the challenges in the domain of image-guided interventions. Finally, the volume on Rehabilitation Robotics is dedicated to the state-of-the-art of an emerging interdisciplinary field where robotics, sensors, and feedback are used in novel ways to re-learn, improve, or restore functional movements in humans.Volume 1, Minimally Invasive Surgical Robotics, focuses on an area of robotic applications that was established in the late 1990s, after the first robotics-assisted minimally invasive surgical procedure. This area has since received significant attention from industry and researchers. The teleoperated and ergonomic features of these robotic systems for minimally invasive surgery (MIS) have been able to reduce or eliminate most of the drawbacks of conventional (laparoscopic) MIS. Robotics-assisted MIS procedures have been conducted on over 3 million patients to date — primarily in the areas of urology, gynecology and general surgery using the FDA approved da Vinci® surgical system. The significant commercial and clinical success of the da Vinci® system has resulted in substantial research activity in recent years to reduce invasiveness, increase dexterity, provide additional features such as image guidance and haptic feedback, reduce size and cost, increase portability, and address specific clinical procedures. The area of robotic MIS is therefore in a state of rapid growth fueled by new developments in technologies such as continuum robotics, smart materials, sensing and actuation, and haptics and teleoperation. An important need arising from the incorporation of robotic technology for surgery is that of training in the appropriate use of the technology, and in the assessment of acquired skills. This volume covers the topics mentioned above in four sections. The first section gives an overview of the evolution and current state the da Vinci® system and clinical perspectives from three groups who use it on a regular basis. The second focuses on the research, and describes a number of new developments in surgical robotics that are likely to be the basis for the next generation of robotic MIS systems. The third deals with two important aspects of surgical robotic systems — teleoperation and haptics (the sense of touch). Technology for implementing the latter in a clinical setting is still very much at the research stage. The fourth section focuses on surgical training and skills assessment necessitated by the novelty and complexity of the technologies involved and the need to provide reliable and efficient training and objective assessment in the use of robotic MIS systems.In Volume 2, Micro and Nano Robotics in Medicine, a brief historical overview of the field of medical nanorobotics as well as the state-of-the-art in the field is presented in the introductory chapter. It covers the various types of nanorobotic systems, their applications and future directions in this field. The volume is divided into three themes related to medical applications. The first theme describes the main challenges of microrobotic design for propulsion in vascular media. Such nanoscale robotic agents are envisioned to revolutionize medicine by enabling minimally invasive diagnostic and therapeutic procedures. To be useful, nanorobots must be operated in complex biological fluids and tissues, which are often difficult to penetrate. In this section, a collection of four papers review the potential medical applications of motile nanorobots, catalytic-based propelling agents, biologically-inspired microrobots and nanoscale bacteria-enabled autonomous drug delivery systems. The second theme relates to the use of micro and nanorobots inside the body for drug-delivery and surgical applications. A collection of six chapters is presented in this segment. The first chapter reviews the different robot structures for three different types of surgery, namely laparoscopy, catheterization, and ophthalmic surgery. It highlights the progress of surgical microrobotics toward intracorporeally navigated mechanisms for ultra-minimally invasive interventions. Then, the design of different magnetic actuation platforms used in micro and nanorobotics are described. An overview of magnetic actuation-based control methods for microrobots, with eventually biomedical applications, is also covered in this segment. The third theme discusses the various nanomanipulation strategies that are currently used in biomedicine for cell characterization, injection, fusion and engineering. In-vitro (3D) cell culture has received increasing attention since it has been discovered to provide a better simulation environment of in-vivo cell growth. Nowadays, the rapid progress of robotic technology paves a new path for the highly controllable and flexible 3D cell assembly. One chapter in this segment discusses the applications of micro-nano robotic techniques for 3D cell culture using engineering approaches. Because cell fusion is important in numerous biological events and applications, such as tissue regeneration and cell reprogramming, a chapter on robotic-tweezers cell manipulation system to achieve precise laser-induced cell fusion using optical trapping has been included in this volume. Finally, the segment ends with a chapter on the use of novel MEMS-based characterization of micro-scale tissues instead of mechanical characterization for cell lines studies.Volume 3, Image-guided Surgical Procedures and Interventions, focuses on several aspects ranging from understanding the challenges and opportunities in this domain, to imaging technologies, to image-guided robotic systems for clinical applications. The volume includes several contributions in the area of imaging in the areas of X-Ray fluoroscopy, CT, PET, MR Imaging, Ultrasound imaging, and optical coherence tomography. Ultrasound-based diagnostics and therapeutics as well as ultrasound-guided planning and navigation are also included in this volume in addition to multi-modal imaging techniques and its applications to surgery and various interventions. The application of multi-modal imaging and fusion in the area of prostate biopsy is also covered. Imaging modality compatible robotic systems, sensors and actuator technologies for use in the MRI environment are also included in this work., as is the development of the framework incorporating image-guided modeling for surgery and intervention. Finally, there are several chapters in the clinical applications domain covering cochlear implant surgery, neurosurgery, breast biopsy, prostate cancer treatment, endovascular interventions, neurovascular interventions, robotic capsule endoscopy, and MRI-guided neurosurgical procedures and interventions.Volume 4, Rehabilitation Robotics, is dedicated to the state-of-the-art of an emerging interdisciplinary field where robotics, sensors, and feedback are used in novel ways to relearn, improve, or restore functional movements in humans. This volume attempts to cover a number of topics relevant to the field. The first section addresses an important activity in our daily lives: walking, where the neuromuscular system orchestrates the gait, posture, and balance. Conditions such as stroke, vestibular deficits, or old age impair this important activity. Three chapters on robotic training, gait rehabilitation, and cooperative orthoses describe the current works in the field to address this issue. The second section covers the significant advances in and novel designs of soft actuators and wearable systems that have emerged in the area of prosthetic lower limbs and ankles in recent years, which offer potential for both rehabilitation and human augmentation. These are described in two chapters. The next section addresses an important emphasis in the field of medicine today that strives to bring rehabilitation out from the clinic into the home environment, so that these medical aids are more readily available to users. The current state-of-the-art in this field is described in a chapter. The last section focuses on rehab devices for the pediatric population. Their impairments are life-long and rehabilitation robotics can have an even bigger impact during their lifespan. In recent years, a number of new developments have been made to promote mobility, socialization, and rehabilitation among the very young: the infants and toddlers. These aspects are summarized in two chapters of this volume.




Handbook Of Contemporary Acoustics And Its Applications


Book Description

Modern acoustics has blossomed rapidly in the past decades. Beginning as a branch off from the classical physics, modern acoustics has become an interdisciplinary science that has exceeded the boundaries of its origins. As a result, the demand for graduate students, professionals and specialists who need to master the knowledge of acoustics is growing quickly. The primary goal of this publication is to meet this urgent need by providing an updated, comprehensive reference book that educates readers on both fundamental concepts as well as their broader applications in the fast-moving technological world. The Handbook of Contemporary Acoustics and Its Applications systematically covers the theoretical principle and analytical methodology of generation, propagation and reception of acoustic waves in an ideal (inviscid) and non-ideal fluid media. The topics include the transduction, radiation, scattering, diffraction and reception of the acoustic wave. It also discusses the acoustic field in a duct/pipe, waveguide and cavity, the wave propagation in the multi-layers, nonlinear finite amplitude wave propagation and the mechanisms of physical and biological effects and their broad modern applications such as sonoporation, targeted drug delivery, acoustic tweezers, noninvasive high intensity focused ultrasound (HIFU) surgery, as well as sonoluminscence. Readers are also provided with the fundamental mathematic background and relevant references necessary for their creative inventions and applications.This handbook is intended for senior undergraduate and graduate students, as well as specialists working in relevant fields, and may be used as a textbook in courses covering acoustics.