Emerging Trends in Immunomodulatory Nanomaterials Toward Cancer Therapy


Book Description

Recently, immunomodulatory nanomaterials have gained immense attention due to their involvement in the modulation of the body’s immune response to cancer therapy. This book highlights various immunomodulatory nanomaterials (including organic, polymer, inorganic, liposomes, viral, and protein nanoparticles) and their role in cancer therapy. Additionally, the mechanism of immunomodulation is reviewed in detail. Finally, the challenges of these therapies and their future outlook are discussed. We believe this book will be helpful to a broad community including students, researchers, educators, and industrialists.




Nano-Oncologicals


Book Description

This authoritative volume focuses on emerging technologies in cancer nano medicine, characterized by their multi-functionality and potential to address simultaneously diverse issues of clinical relevance in the treatment of cancer. The book consists of sixteen chapters divided into six sections: 1) Biological Barriers in Cancer; 2) Tumor Targeting; 3) Targeting the Immune System; 4) Gene Therapy; 5) Nano theranostics and 6) Translational Aspects of Nano-Oncologicals. The volume starts with an introduction describing the biological barriers associated with cancer therapy and highlighting ways to overcome such barriers through the use of nanotechnology. This is followed by an analysis of the two major targeting strategies currently under investigation in cancer therapy: namely, the targeting of cancer cells and the targeting of the immune system. In the first case, the book presents liposomal and polymer-based therapies, including photodynamic approaches. In the second case, it analyzes in detail the possibility of either improving the efficiency of the immune system toward preventing cancer progression (cancer immunomodulation) or generating responses against specific cancer antigens (cancer vaccines). Beyond these targeting options, Nano-Oncologicals: New Targeting and Delivery Approaches presents the most recent technological advances in the area of nucleic acid-based therapies, along with those in the area of theranostics, where the design of multifunctional nano carriers becomes vital. Following the study of the most promising nanotechnologies around the development of nano-oncologicals, the book ends with an overview of regulatory and toxicological issues, which are critical in their translational pathway, and the presentation of a nucleic acid-based therapy case-study. This book is an important resource for scientists interested in the design and development of anticancer nanotechnologies and also to those aiming to push their technology through clinical development.




Nanomedicine for Cancer Therapy


Book Description

This Brief focuses on the cancer therapy available till date, from conventional drug delivery to nanomedicine in clinical trial. In addition, it reports on future generation based nanotherapeutics and cancer theranostic agent for effective therapeutic diagnosis and treatment. Breast cancer was chosen as the model system in this review. The authors give emphasis to multiple drug resistance (MDR) and its mechanism and how to overcome it using the nanoparticle approach.




Nanomedicine for Cancer Diagnosis and Therapy


Book Description

This book reviews the current applications and future prospects of nanomaterials in cancer diagnostics and therapy. Nanomaterials have recently emerged as a remarkable and promising tool for cancer therapy and diagnosis, due to their broad range of intrinsic molecular properties. To overcome the current limitations of nanoparticles in drug delivery systems, attempts have been made to synthesize nanoparticles from biological materials for targeted cancer therapy. This book provides concise evaluations of various potential bio-inspired platforms that mimic natural components of the body and offer effective and versatile drug delivery systems for cancer therapy. It also assesses the potential of nanoparticles to enhance the outcomes of cancer immunotherapy via immune cell activation and tumor microenvironment modulation. The book also summarizes in the applications of nanomaterials for the detection, prevention, and treatment of solid tumors and in the treatment of leukemia and lymphomas. In closing, it discusses ethical issues in nanomedicine, including risk assessment, risk management, and risk communication during clinical trials. The book offers offers a valuable source of information for students, academics, researchers, scientists, clinicians, and healthcare professionals working in nanotechnology and cancer research.




Cancer Nanotheranostics


Book Description

Nanotechnology is an interdisciplinary research field that integrates chemistry, engineering, biology, and medicine. Nanomaterials offer tremendous opportunity as well as challenges for researchers. Of course, cancer is one of the world's most common health problems, responsible for many deaths. Exploring efficient anticancer drugs could revolutionize treatment options and help manage cancer mortality. Nanomedicine plays a significant role in developing alternative and more effective treatment strategies for cancer theranostics. This book mainly focuses on the emerging trends using nanomaterials and nanocomposites as alternative anticancer material’s. The book is divided into three main topic areas: how to overcome existing traditional approaches to combat cancer, applying multiple mechanisms to target the cancer cells, and how nanomaterials can be used as effective carriers. The contents highlight recent advances in interdisciplinary research on processing, morphology, structure, and properties of nanostructured materials and their applications to combat cancer.Cancer Nanotheranostics is comprehensive in that it discusses all aspects of cancer nanotechnology. Because of the vast amount of information, it was decided to split this material into two volumes. In the first volume of Cancer Nanotheranostics, we discuss the role of different nanomaterials for cancer therapy, including lipid-based nanomaterials, protein and peptide-based nanomaterials, polymer-based nanomaterials, metal-organic nanomaterials, porphyrin-based nanomaterials, metal-based nanomaterials, silica-based nanomaterials, exosome-based nanomaterials and nano-antibodies. In the second volume, we discuss the nano-based diagnosis of cancer, nano-oncology for clinical applications, nano-immunotherapy, nano-based photothermal cancer therapy, nano-erythrosomes for cancer drug delivery, regulatory perspectives of nanomaterials, limitations of cancer nanotheranostics, the safety of nano-biomaterials for cancer nanotheranostics, multifunctional nanomaterials for targeting cancer nanotheranostics, and the role of artificial intelligence in cancer nanotheranostics.




Nanoparticles in Lung Cancer Therapy - Recent Trends


Book Description

This brief provides an insight into the present scenario of the role of nanotechnology in the diagnosis and treatment of lung cancer at an early stage. Currently, lung cancer is the subject of major concern owing to the very high mortality rate throughout the world. Most of the conventional treatment methods such as surgery, chemotherapy, radiotherapy, etc., fail to prolong life of the patients. Incidents of recurrence are also very common in case of lung cancer. Researchers have shown that nanoparticles may act as a powerful anti cancer tool, especially for lung cancer. Unique surface properties and easy surface functionalization of nanoparticles enable early detection, diagnosis, imaging and treatment of lung cancer. The authors have elaborately presented how various nanoparticles (natural, semi synthetic and synthetic) may help in the treatment of lung cancer. They have also detailed works of various scientists who succeeded in developing effective nanoparticles and enabled very specific lung cancer therapy without any undesirable side effects and minimized death.




Recent Trends in Cancer Therapeutics


Book Description

This book describes the plasmonic photothermal-assisted multimodal cancer therapeutics in the area of cancer nanotechnology or cancer nanomedicine. This book covers the fundamentals of plasmonic photothermal cancer therapy as well as plasmonic photothermal mediated multimodal cancer therapy. The various steps involved in developing such therapeutic modality, viz. (a) the selection of suitable nanoparticles, (b) synthesis of multifunctional nanocomposite, (c) optimization of the photosensitizer and chemotherapeutic drug loadings, (d) characterization of the synthesized nanocomposite, and (e) therapeutic evaluations through novel tumor-tissue mimicking phantoms and the cancer cell lines are discussed in detail. Apart from the detailed description of therapeutic outcome, this book provides a step-by-step approach to develop a multifunctional nanocomposite for such therapeutics. Overall, this book provides simplified and in-depth information about cancer nanobiotechnology to the researchers and graduate students in subject areas of nanotechnology, biotechnology and pharmaceutics to develop and contribute to such multimodal cancer therapeutics.




Nanomaterials for Cancer Therapy


Book Description

This first comprehensive overview on nanotechnological approaches to cancer therapy brings together therapeutic oncology and nanotechnology, showing the various strategic approaches to selectively eliminating cancerous cells without damaging the surrounding healthy tissue. The strategies covered include magnetic, optical, microwave and neutron absorption techniques, nanocapsules for active agents, nanoparticles as active agents, and active and passive targeting, while also dealing with fundamental aspects of how nanoparticles cross biological barriers. A valuable single source gathering the many articles published in specialized journals often difficult to locate for members of the other disciplines involved.




Emerging Nanotechnologies in Immunology


Book Description

Emerging Nanotechnologies in Immunology aims to deliver a systematic and comprehensive review of data concerning the nature of interaction and nano-related risks between the nanophamaceuticals currently in the pipeline of S&T development for skin, ocular, and nasal drug delivery, including absorption, toxicity, and the ability to distribute after systemic exposure.The scientific development of manufactured nanomaterials for drug delivery is increasing rapidly. One of the most prominent applications is topical drug delivery, where cutaneous, ocular, and nasal exposure becomes even more relevant. These targets are the first barrier that nanoparticles encounter when in contact with the human body.The contributors addresses a representative set of the broad spectrum of nanopharmaceuticals currently being used, including cationic lipid nanoparticles, polymeric PLGA, PLA nanoparticles, biomacromolecules-based nanoparticles, and other scaffolds tissue engineered skin substitutes. Regulation and risk is also covered, since the safety of these nanophamaceuticals still represents a barrier to their wide innovative use. Provides the reader with a thorough knowledge of the safety aspects of nanopharmaceuticals which are currently under research Focuses on the characterization and quantification of the nanopharmaceuticals Allows readers to understand the correlation between the nature of the materials and their potential nanotoxicological effects Includes an overview of regulatory aspects related to the R&D of nanopharmaceuticals




Advanced Healthcare Materials


Book Description

Offers a comprehensive and interdisciplinary view of cutting-edge research on advanced materials for healthcare technology and applications Advanced healthcare materials are attracting strong interest in fundamental as well as applied medical science and technology. This book summarizes the current state of knowledge in the field of advanced materials for functional therapeutics, point-of-care diagnostics, translational materials, and up-and-coming bioengineering devices. Advanced Healthcare Materials highlights the key features that enable the design of stimuli-responsive smart nanoparticles, novel biomaterials, and nano/micro devices for either diagnosis or therapy, or both, called theranostics. It also presents the latest advancements in healthcare materials and medical technology. The senior researchers from global knowledge centers have written topics including: State-of-the-art of biomaterials for human health Micro- and nanoparticles and their application in biosensors The role of immunoassays Stimuli-responsive smart nanoparticles Diagnosis and treatment of cancer Advanced materials for biomedical application and drug delivery Nanoparticles for diagnosis and/or treatment of Alzheimers disease Hierarchical modelling of elastic behavior of human dental tissue Biodegradable porous hydrogels Hydrogels in tissue engineering, drug delivery, and wound care Modified natural zeolites Supramolecular hydrogels based on cyclodextrin poly(pseudo)rotaxane Polyhydroxyalkanoate-based biomaterials Biomimetic molecularly imprinted polymers