Emmy Noether in Bryn Mawr


Book Description

Sponsored by the Association for Women in Mathematics




Emmy Noether


Book Description




Emmy Noether 1882–1935


Book Description

N 1964 at the World's Fair in New York I City one room was dedicated solely to mathematics. The display included a very at tractive and informative mural, about 13 feet long, sponsored by one of the largest com puter manufacturing companies and present ing a brief survey of the history of mathemat ics. Entitled, "Men of Modern Mathematics," it gives an outline of the development of that science from approximately 1000 B. C. to the year of the exhibition. The first centuries of this time span are illustrated by pictures from the history of art and, in particular, architec ture; the period since 1500 is illuminated by portraits of mathematicians, including brief descriptions of their lives and professional achievements. Close to eighty portraits are crowded into a space of about fourteen square feet; among them, only one is of a woman. Her face-mature, intelligent, neither pretty nor handsome-may suggest her love of sci- 1 Emmy Noether ence and creative gift, but certainly reveals a likeable personality and a genuine kindness of heart. It is the portrait of Emmy Noether ( 1882 - 1935), surrounded by the likenesses of such famous men as Joseph Liouville (1809-1882), Georg Cantor (1845-1918), and David Hilbert (1862 -1943). It is accom panied by the following text: Emmy Noether, daughter of the mathemati cian Max, was often called "Der Noether," as if she were a man.




Proving It Her Way


Book Description

The name Emmy Noether is one of the most celebrated in the history of mathematics. A brilliant algebraist and iconic figure for women in modern science, Noether exerted a strong influence on the younger mathematicians of her time and long thereafter; today, she is known worldwide as the "mother of modern algebra." Drawing on original archival material and recent research, this book follows Emmy Noethers career from her early years in Erlangen up until her tragic death in the United States. After solving a major outstanding problem in Einsteins theory of relativity, she was finally able to join the Göttingen faculty in 1919. Proving It Her Way offers a new perspective on an extraordinary career, first, by focusing on important figures in Noethers life and, second, by showing how she selflessly promoted the careers of several other talented individuals. By exploring her mathematical world, it aims to convey the personality and impact of a remarkable mathematician who literally changed the face of modern mathematics, despite the fact that, as a woman, she never held a regular professorship. Written for a general audience, this study uncovers the human dimensions of Noethers key relationships with a younger generation of mathematicians. Thematically, the authors took inspiration from their cooperation with the ensemble portraittheater Vienna in producing the play "Diving into Math with Emmy Noether." Four of the young mathematicians portrayed in Proving It Her Way - B.L. van der Waerden, Pavel Alexandrov, Helmut Hasse, and Olga Taussky - also appear in "Diving into Math.".




Emmy Noether in Bryn Mawr


Book Description




Emmy Noether in Bryn Mawr


Book Description




Emmy Noether


Book Description

This book, written primarily for the young adult reader, tells the life story of Emmy Noether, the most important female mathematician of our time. Because no one expected her to grow into an important scientist, the records of her early life are sketchy. After all, it was assumed that she would grow up to be a wife and mother. Instead, she was a g




Emmy Noether in Bryn Mawr


Book Description




Emmy Noether


Book Description

An engaging picture book biography of a groundbreaking female mathematician. Emmy Noether is not pretty, quiet or good at housework — all the things a girl of her time is expected to be. What she is, though, is brilliant at math. And when she grows up, she skirts the rules to first study math at a university and then teach it. She also helps to solve of the most pressing mathematical and physics problems of the day. And though she doesn’t get much credit during her lifetime, her discoveries continue to influence how we understand the world today. One of the most influential mathematicians of the twentieth century finally gets her due!




Emmy Noether's Wonderful Theorem


Book Description

One of the most important—and beautiful—mathematical solutions ever devised, Noether’s theorem touches on every aspect of physics. "In the judgment of the most competent living mathematicians, Fräulein Noether was the most significant creative mathematical genius thus far produced since the higher education of women began."—Albert Einstein The year was 1915, and the young mathematician Emmy Noether had just settled into Göttingen University when Albert Einstein visited to lecture on his nearly finished general theory of relativity. Two leading mathematicians of the day, David Hilbert and Felix Klein, dug into the new theory with gusto, but had difficulty reconciling it with what was known about the conservation of energy. Knowing of her expertise in invariance theory, they requested Noether’s help. To solve the problem, she developed a novel theorem, applicable across all of physics, which relates conservation laws to continuous symmetries—one of the most important pieces of mathematical reasoning ever developed. Noether’s “first” and “second” theorem was published in 1918. The first theorem relates symmetries under global spacetime transformations to the conservation of energy and momentum, and symmetry under global gauge transformations to charge conservation. In continuum mechanics and field theories, these conservation laws are expressed as equations of continuity. The second theorem, an extension of the first, allows transformations with local gauge invariance, and the equations of continuity acquire the covariant derivative characteristic of coupled matter-field systems. General relativity, it turns out, exhibits local gauge invariance. Noether’s theorem also laid the foundation for later generations to apply local gauge invariance to theories of elementary particle interactions. In Dwight E. Neuenschwander’s new edition of Emmy Noether’s Wonderful Theorem, readers will encounter an updated explanation of Noether’s “first” theorem. The discussion of local gauge invariance has been expanded into a detailed presentation of the motivation, proof, and applications of the “second” theorem, including Noether’s resolution of concerns about general relativity. Other refinements in the new edition include an enlarged biography of Emmy Noether’s life and work, parallels drawn between the present approach and Noether’s original 1918 paper, and a summary of the logic behind Noether’s theorem.