Empirical Seismic Vulnerability and Resilience Assessment of Building Clusters


Book Description

Empirical Seismic Vulnerability and Resilience Assessment of Building Clusters analyzes the seismic vulnerability analysis of 10 types of structures and studies and discusses the evaluation of structural damage using risk analysis and shaking table test methods. The book focuses on seismic vulnerabilities but does not consider the contribution of typical empirical structural seismic damage data to structural vulnerability assessment and prediction. In other words, the empirical data's role in regional seismic damage is omitted. It is recognized that the impact of earthquakes on large-scale areas is extensive, not only on a building but also on a group of buildings. This book is based on the research background of typical seismic damage characteristics of 11 types of engineering structures and is based on a large volume of pictures and data investigated by the author on-site. Characteristics of the vulnerability of various structures are analyzed, and measures and methods to improve the vulnerability of various structures are provided. Combined with probability risk, reliability, machine learning, and other means, vulnerability prediction and evaluation models are established, respectively, and the rationality of the models is verified by hundreds of on-site earthquake damage survey data. The above research and highlights are unique to this book, making it a key resource for academic researchers and practicing engineers in civil and seismic engineering, senior undergraduates, and graduate students. Increases engineers' theoretical and practical knowledge of field investigationand improves their efficiency and quality in future workIncludes the analyses of hundreds of earthquake field survey dataProvides a vulnerability assessment of diversified structural experience




Innovative Methodologies for Resilient Buildings and Cities


Book Description

Resilient buildings and cities are in the center of common interests in modern academic communities for science and engineering related to built environment. Resilience of buildings and cities against multidisciplinary risks, e.g. earthquakes, strong winds, floods, etc., is strongly related to the sustainability of buildings and cities in which reduction of damage during a disaster and fast recovery from the damage are key issues. The reduction of damage is related to the level of resistance of buildings and the time of recovery is affected by the amount of supply of damaged members, assurance of restoration work, etc. Robustness, redundancy, resourcefulness, and rapidity are four key factors for supporting the full realization of design and construction of resilient buildings and cities. This research topic gathers cutting-edge and innovative research from various aspects, e.g. robustness of buildings and cities against earthquake risk, structural control and base-isolation for controlling damage risks, quantification of resilience measures, structural health monitoring, innovative structural engineering techniques for higher safety of buildings, resilience actions and tools at the urban scale, etc.




Handbook of Seismic Risk Analysis and Management of Civil Infrastructure Systems


Book Description

Earthquakes represent a major risk to buildings, bridges and other civil infrastructure systems, causing catastrophic loss to modern society. Handbook of seismic risk analysis and management of civil infrastructure systems reviews the state of the art in the seismic risk analysis and management of civil infrastructure systems.Part one reviews research in the quantification of uncertainties in ground motion and seismic hazard assessment. Part twi discusses methodologies in seismic risk analysis and management, whilst parts three and four cover the application of seismic risk assessment to buildings, bridges, pipelines and other civil infrastructure systems. Part five also discusses methods for quantifying dependency between different infrastructure systems. The final part of the book considers ways of assessing financial and other losses from earthquake damage as well as setting insurance rates.Handbook of seismic risk analysis and management of civil infrastructure systems is an invaluable guide for professionals requiring understanding of the impact of earthquakes on buildings and lifelines, and the seismic risk assessment and management of buildings, bridges and transportation. It also provides a comprehensive overview of seismic risk analysis for researchers and engineers within these fields. - This important handbook reviews the wealth of recent research in the area of seismic hazard analysis in modern earthquake design code provisions and practices - Examines research into the analysis of ground motion and seismic hazard assessment, seismic risk hazard methodologies - Addresses the assessment of seismic risks to buildings, bridges, water supply systems and other aspects of civil infrastructure




Risk, Reliability and Sustainable Remediation in the Field of Civil and Environmental Engineering


Book Description

Risk, Reliability and Sustainable Remediation in the Field of Civil and Environmental Engineering illustrates the concepts of risk, reliability analysis, its estimation, and the decisions leading to sustainable development in the field of civil and environmental engineering. The book provides key ideas on risks in performance failure and structural failures of all processes involved in civil and environmental systems, evaluates reliability, and discusses the implications of measurable indicators of sustainability in important aspects of multitude of civil engineering projects. It will help practitioners become familiar with tolerances in design parameters, uncertainties in the environment, and applications in civil and environmental systems. Furthermore, the book emphasizes the importance of risks involved in design and planning stages and covers reliability techniques to discover and remove the potential failures to achieve a sustainable development. - Contains relevant theory and practice related to risk, reliability and sustainability in the field of civil and environment engineering - Gives firsthand experience of new tools to integrate existing artificial intelligence models with large information obtained from different sources - Provides engineering solutions that have a positive impact on sustainability




National Earthquake Resilience


Book Description

The United States will certainly be subject to damaging earthquakes in the future. Some of these earthquakes will occur in highly populated and vulnerable areas. Coping with moderate earthquakes is not a reliable indicator of preparedness for a major earthquake in a populated area. The recent, disastrous, magnitude-9 earthquake that struck northern Japan demonstrates the threat that earthquakes pose. Moreover, the cascading nature of impacts-the earthquake causing a tsunami, cutting electrical power supplies, and stopping the pumps needed to cool nuclear reactors-demonstrates the potential complexity of an earthquake disaster. Such compound disasters can strike any earthquake-prone populated area. National Earthquake Resilience presents a roadmap for increasing our national resilience to earthquakes. The National Earthquake Hazards Reduction Program (NEHRP) is the multi-agency program mandated by Congress to undertake activities to reduce the effects of future earthquakes in the United States. The National Institute of Standards and Technology (NIST)-the lead NEHRP agency-commissioned the National Research Council (NRC) to develop a roadmap for earthquake hazard and risk reduction in the United States that would be based on the goals and objectives for achieving national earthquake resilience described in the 2008 NEHRP Strategic Plan. National Earthquake Resilience does this by assessing the activities and costs that would be required for the nation to achieve earthquake resilience in 20 years. National Earthquake Resilience interprets resilience broadly to incorporate engineering/science (physical), social/economic (behavioral), and institutional (governing) dimensions. Resilience encompasses both pre-disaster preparedness activities and post-disaster response. In combination, these will enhance the robustness of communities in all earthquake-vulnerable regions of our nation so that they can function adequately following damaging earthquakes. While National Earthquake Resilience is written primarily for the NEHRP, it also speaks to a broader audience of policy makers, earth scientists, and emergency managers.







Measuring Vulnerability to Natural Hazards


Book Description

Measuring Vulnerability to Natural Hazards presents a broad range of current approaches to measuring vulnerability. It provides a comprehensive overview of different concepts at the global, regional, national, and local levels, and explores various schools of thought. More than 40 distinguished academics and practitioners analyse quantitative and qualitative approaches, and examine their strengths and limitations. This book contains concrete experiences and examples from Africa, Asia, the Americas and Europe to illustrate the theoretical analyses.The authors provide answers to some of the key questions on how to measure vulnerability and they draw attention to issues with insufficient coverage, such as the environmental and institutional dimensions of vulnerability and methods to combine different methodologies.This book is a unique compilation of state-of-the-art vulnerability assessment and is essential reading for academics, students, policy makers, practitioners, and anybody else interested in understanding the fundamentals of measuring vulnerability. It is a critical review that provides important conclusions which can serve as an orientation for future research towards more disaster resilient communities.







LESSLOSS


Book Description




Building Urban Resilience


Book Description

This handbook is a resource for enhancing disaster resilience in urban areas. It summarizes the guiding principles, tools, and practices in key economic sectors that can facilitate incorporation of resilience concepts into decisions about infrastructure investments and urban management that are integral to reducing disaster and climate risks.