Emulsions, Foams, Suspensions, and Aerosols


Book Description

This is the first book to provide an integrated introduction to the nature, formation and occurrence, stability, propagation, and uses of the most common types of colloidal dispersion in the process-related industries. The primary focus is on the applications of the principles, paying attention to practical processes and problems. This is done both as part of the treatment of the fundamentals, where appropriate, and also in the separate sections devoted to specifi c kinds of industries. Throughout, the treatment is integrated, with the principles of colloid and interface science common to each dispersion type presented for each major physical property class, followed by separate treatments of features unique to emulsions, foams, or suspensions. The first half of the book introduces the fundamental principles, introducing readers to suspension formation and stability, characterization, and fl ow properties, emphasizing practical aspects throughout. The following chapters discuss a wide range of industrial applications and examples, serving to emphasize the diff erent methodologies that have been successfully applied. The author assumes no prior knowledge of colloid chemistry and, with its glossary of key terms, complete cross-referencing and indexing, this is a must-have for graduate and professional scientists and engineers who may encounter or use emulsions, foams, or suspensions, or combinations thereof, whether in process design, industrial production, or in related R&D fields.




Emulsions, Foams, and Suspensions


Book Description

Until now colloid science books have either been theoretical, or focused on specific types of dispersion, or on specific applications. This then is the first book to provide an integrated introduction to the nature, formation and occurrence, stability, propagation, and uses of the most common types of colloidal dispersion in the process-related industries. The primary focus is on the applications of the principles, paying attention to practical processes and problems. This is done both as part of the treatment of the fundamentals, where appropriate, and also in the separate sections devoted to specific kinds of industries. Throughout, the treatment is integrated, with the principles of colloid and interface science common to each dispersion type presented for each major physical property class, followed by separate treatments of features unique to emulsions, foams, or suspensions. The first half of the book introduces the fundamental principles, introducing readers to suspension formation and stability, characterization, and flow properties, emphasizing practical aspects throughout. The following chapters discuss a wide range of industrial applications and examples, serving to emphasize the different methodologies that have been successfully applied. Overall, the book shows how to approach making emulsions, foams, and suspensions with different useful properties, how to propagate them, and how to prevent their formation or destabilize them if necessary. The author assumes no prior knowledge of colloid chemistry and, with its glossary of key terms, complete cross-referencing and indexing, this is a must-have for graduate and professional scientists and engineers who may encounter or use emulsions, foams, or suspensions, or combinations thereof, whether in process design, industrial production, or in related R&D fields.




Dispersion of Powders


Book Description

Teaching the fundamental knowledge required for successful dispersion of powders in a liquid, this book covers a host of topics -- from recent advances to industrial applications. In 15 chapters it supports formulation chemists in preparing a suspension in a more rational way, by applying the principles of colloid and interface science, while at the same time enabling the research scientist to discover new methods for preparing stable suspensions. Essential reading for those working in the pharmaceutical, cosmetic, food, paint, ceramic and agricultural industries.




Rheology of Dispersions


Book Description

A dispersion is a system of unmixable phases in which one phase is continuous and at least one is finely distributed. Examples are found in many industrial applications, including emulsions, suspensions, foams, and geld. The control of their flow characteristics - rheology - is essential in their preparation, long-term physical stability and application. Filling the need for a practical, up-to-date book connecting the stability/instability of the dispersion to its rheological behavior, this title aids in understanding the principles of rheology and the techniques that can be applied. From the contents: * General Introduction * Interparticle Interactions and Their Combination * Principles of Viscoelastic Behavior * Rheology of Suspensions * Rheology of Emulsions * Rheology of Modifiers, Thickeners, and Gels * Use of Rheological Measurements for Assessment and Prediction of the Long-Term Physical Stability of Formulations (Creaming and Sedimentation)




Colloids and Interfaces with Surfactants and Polymers


Book Description

From blood to milk, pumice to gelatine, most scientists interact with colloids on a daily basis without any real knowledge of their nature. Building on the success of the first edition, Colloids and Interfaces with Surfactants and Polymers Second Edition is a user-friendly, non-technical introduction to colloids and interfaces. Includes: Many practical examples of colloid and interface science An enhanced section on fluorescence microscopy, a widely used technique in biological systems for the optical imaging of cellular structures A new section on phenomenology (the principle of time/temperature superposition), which enables the experimentalist to extend the frequency range of their rheological instruments New information on sedimentation and strategies for the control of sedimentation, which is critical in many dispersions of commercial importance Fresh treatments of traditional theoretical topics like the electrical double-layer, colloidal interactions, wetting behavior and light scattering, as well as more recent advances in polymer science, statistical mechanics and the use of neutrons In-depth discussions of widely used techniques with mathematics used in a straight-forward way so quantitative descriptions of colloid and interface properties can be derived Colloids and Interfaces with Surfactants and Polymers Second Edition explains all the fundamental concepts of colloids and interfaces as well as detailing some of the more advanced aspects which might be useful in specific applications. Intended for undergraduate and graduate courses in colloids and soft materials, the book is also relevant to those in the chemical, coatings, cosmetics, ceramics, food, pharmaceutical and oil industries. For Powerpoint slides of all the figures in the book, please see the Instructor Companion website at http://bcs.wiley.com/he-bcs/Books?action=index&bcsId=5121&itemId=0470518804




Surface Chemistry of Surfactants and Polymers


Book Description

This book gives the reader an introduction to the field of surfactants in solution as well as polymers in solution. Starting with an introduction to surfactants the book then discusses their environmental and health aspects. Chapter 3 looks at fundamental forces in surface and colloid chemistry. Chapter 4 covers self-assembly and 5 phase diagrams. Chapter 6 reviews advanced self-assembly while chapter 7 looks at complex behaviour. Chapters 8 to 10 cover polymer adsorption at solid surfaces, polymers in solution and surface active polymers, respectively. Chapters 11 and 12 discuss adsorption and surface and interfacial tension, while Chapters 13- 16 deal with mixed surfactant systems. Chapter 17, 18 and 19 address microemulsions, colloidal stability and the rheology of polymer and surfactant solutions. Wetting and wetting agents, hydrophobization and hydrophobizing agents, solid dispersions, surfactant assemblies, foaming, emulsions and emulsifiers and microemulsions for soil and oil removal complete the coverage in chapters 20-25.




Basic Principles of Colloid Science


Book Description

This book provides an introduction to colloid science, based on the application of the principles of physical chemistry. Early chapters assume only an elementary knowledge of physical chemistry and provide the basis for more thorough discussion in later chapters covering specific aspects of colloid science. The widespread occurrence of colloids is stressed and the more important industrial applications of colloid technology are outlined. The final chapter deals with the future of colloid science and indicates the directions in which further developments are likely to take place. The book is ideal for undergraduate courses and, supplemented by further reading, for postgraduates too. It will also be useful to industrial research workers who wish to become familiar with the basic ideas and their many important applications to industry.




Introduction to Applied Colloid and Surface Chemistry


Book Description

Colloid and Surface Chemistry is a subject of immense importance and implications both to our everyday life and numerous industrial sectors, ranging from coatings and materials to medicine and biotechnology. How do detergents really clean? (Why can't we just use water?) Why is milk "milky"? Why do we use eggs so often for making sauces? Can we deliver drugs in better and controlled ways? Coating industries wish to manufacture improved coatings e.g. for providing corrosion resistance, which are also environmentally friendly i.e. less based on organic solvents and if possible exclusively on water. Food companies want to develop healthy, tasty but also long-lasting food products which appeal to the environmental authorities and the consumer. Detergent and enzyme companies are working to develop improved formulations which clean more persistent stains, at lower temperatures and amounts, to the benefit of both the environment and our pocket. Cosmetics is also big business! Creams, lotions and other personal care products are really just complex emulsions. All of the above can be explained by the principles and methods of colloid and surface chemistry. A course on this topic is truly valuable to chemists, chemical engineers, biologists, material and food scientists and many more.




Calculating and Problem Solving Through Culinary Experimentation


Book Description

While many books proliferate elucidating the science behind the transformations during cooking, none teach the concepts of physics chemistry through problem solving based on culinary experiments as this one by renowned chemist and one of the founders of molecular gastronomy. Calculating and Problem Solving Through Culinary Experimentation offers an appealing approach to teaching experimental design and scientific calculations. Given the fact that culinary phenomena need physics and chemistry to be interpreted, there are strong and legitimate reasons for introducing molecular gastronomy in scientific curriculum. As any scientific discipline, molecular gastronomy is based on experiments (to observe the phenomena to be studied) and calculation (to fit the many data obtained by quantitative characterization of the studied phenomena), but also for making the theoretical work without which no real science is done, including refuting consequences of the introduced theories. Often, no difficult calculations are needed, and many physicists, in particular, make their first steps in understanding phenomena with very crude calculations. Indeed, they simply apply what they learned, before moving to more difficult math. In this book, the students are invited first to make simple experiments in order to get a clear idea of the (culinary) phenomena that they will be invited to investigate, and then are asked simple questions about the phenomena, for which they have to transform their knowledge into skills, using a clear strategy that is explained throughout. Indeed, the is "problem solving based on experiments", and all this about food and cooking. Key Features: Introduces readers to tips for experimental work Shows how simple scientific knowledge can be applied in understanding questions Provides a sound method ("strategy") for calculation in physics and chemistry Presents important definitions and laws for physical chemistry Gives confidence in one’s calculation skill and problem solving skills Explore physical and chemical phenomena that occur during cooking A unique mix of culinary arts and correct calculations, this book is useful to students as well as professors in chemistry, physics, biology, food science and technology.




Applied Pharmaceutics in Contemporary Compounding


Book Description

Applied Pharmaceutics in Contemporary Compounding, Third Edition is designed to convey a fundamental understanding of the principles and practices involved in both the development and the production of compounded dosage forms by applying pharmaceutical principles.