Energy Conversion for Space Power


Book Description

Progress in Astronautics and Rocketry, Volume 3: Energy Conversion for Space Power focuses on the use of dependable electric power sources on space vehicles. Composed of various literature, the book first discusses the physics of thermoelectricity, thermoelectric generator of materials, the use of semiconductors in thermoelectric conversion, and the use of high temperature thermoelectric materials for power generation. The text also presents experiments on the effect of irradiation on thermoelectric materials, thermoelectric elements in space power systems, and thermionics. The book then describes photovoltaic effect and conversion of solar energy; trends in silicon solar cell technology; the use of silicon solar cells in energy conversion; and how radiation affects solar cell power systems. The text notes the specifications of batteries if used in communications satellites; the use of positive-displacement engines and turbines on cryogenic power systems; and the characteristics of magnetohydrodynamic (MHD) generators in space power conversion. The book is a good source of information for readers and scientists wanting to explore the potential of energy conversion in space power technology.




Modeling Power Electronics and Interfacing Energy Conversion Systems


Book Description

Discusses the application of mathematical and engineering tools for modeling, simulation and control oriented for energy systems, power electronics and renewable energy This book builds on the background knowledge of electrical circuits, control of dc/dc converters and inverters, energy conversion and power electronics. The book shows readers how to apply computational methods for multi-domain simulation of energy systems and power electronics engineering problems. Each chapter has a brief introduction on the theoretical background, a description of the problems to be solved, and objectives to be achieved. Block diagrams, electrical circuits, mathematical analysis or computer code are covered. Each chapter concludes with discussions on what should be learned, suggestions for further studies and even some experimental work. Discusses the mathematical formulation of system equations for energy systems and power electronics aiming state-space and circuit oriented simulations Studies the interactions between MATLAB and Simulink models and functions with real-world implementation using microprocessors and microcontrollers Presents numerical integration techniques, transfer-function modeling, harmonic analysis and power quality performance assessment Examines existing software such as, MATLAB/Simulink, Power Systems Toolbox and PSIM to simulate power electronic circuits including the use of renewable energy sources such as wind and solar sources The simulation files are available for readers who register with the Google Group: power-electronics-interfacing-energy-conversion-systems@googlegroups.com. After your registration you will receive information in how to access the simulation files, the Google Group can also be used to communicate with other registered readers of this book.




NASA Space Technology Roadmaps and Priorities


Book Description

NASA's Office of the Chief Technologist (OCT) has begun to rebuild the advanced space technology program in the agency with plans laid out in 14 draft technology roadmaps. It has been years since NASA has had a vigorous, broad-based program in advanced space technology development and its technology base has been largely depleted. However, success in executing future NASA space missions will depend on advanced technology developments that should already be underway. Reaching out to involve the external technical community, the National Research Council (NRC) considered the 14 draft technology roadmaps prepared by OCT and ranked the top technical challenges and highest priority technologies that NASA should emphasize in the next 5 years. This report provides specific guidance and recommendations on how the effectiveness of the technology development program managed by OCT can be enhanced in the face of scarce resources.




Energy Harvesting


Book Description

Also called energy scavenging, energy harvesting captures, stores, and uses "clean" energy sources by employing interfaces, storage devices, and other units. Unlike conventional electric power generation systems, renewable energy harvesting does not use fossil fuels and the generation units can be decentralized, thereby significantly reducing transmission and distribution losses. But advanced technical methods must be developed to increase the efficiency of devices in harvesting energy from environmentally friendly, "green" resources and converting them into electrical energy. Recognizing this need, Energy Harvesting: Solar, Wind, and Ocean Energy Conversion Systems describes various energy harvesting technologies, different topologies, and many types of power electronic interfaces for stand-alone utilization or grid connection of energy harvesting applications. Along with providing all the necessary concepts and theoretical background, the authors develop simulation models throughout the text to build a practical understanding of system analysis and modeling. With a focus on solar energy, the first chapter discusses the I−V characteristics of photovoltaic (PV) systems, PV models and equivalent circuits, sun tracking systems, maximum power point tracking systems, shading effects, and power electronic interfaces for grid-connected and stand-alone PV systems. It also presents sizing criteria for applications and modern solar energy applications, including residential, vehicular, naval, and space applications. The next chapter reviews different types of wind turbines and electrical machines as well as various power electronic interfaces. After explaining the energy generation technologies, optimal operation principles, and possible utilization techniques of ocean tidal energy harvesting, the book explores near- and offshore approaches for harvesting the kinetic and potential energy of ocean waves. It also describes the required absorber, turbine, and generator types, along with the power electronic interfaces for grid connection and commercialized ocean wave energy conversion applications. The final chapter deals with closed, open, and hybrid-cycle ocean thermal energy conversion systems.




Nuclear Space Power and Propulsion Systems


Book Description

Nuclear propulsion : an introduction / Claudio Bruno -- Nuclear-thermal-rocket propulsion systems / Timothy J. Lawrence -- Application of ion thrusters to high-thrust, high-specific-impulse nuclear electric missions / D.G. Fearn -- High-power and high-thrust-density electric propulsion for in-space transportation / Monika Auweter-Kurtz and Helmut Kurtz -- Review of reactor configurations for space nuclear electric propulsion and surface power considerations / Roger X. Lenard -- Nuclear safety : legal aspects and policy recommendations / Roger X. Lenard -- Radioactivity, doses, and risks in nuclear propulsion / Alessio Del Rossi and Claudio Bruno -- The Chernobyl accident : a detailed account / Alessio del Rossi and Claudio Bruno.




Renewable energy conversion systems


Book Description

Fundamentals of Renewable Energy Systems goes beyond theoretical aspects of advances in renewable energy and addresses future trends. By focusing on the design of developing technologies, relevant operation and detailed background and an understanding of the application of power electronics and thermodynamics processes in renewable energy, this book provides an analysis of advancing energy systems. The book will be of interest to engineering graduates, researchers, professors and industry professionals involved in the renewable energy sector and is ideal for advanced engineering courses dealing with renewable energy, sources, thermal and electrical energy production and sustainability. With increasing focus on developing low carbon energy production, audiences need to have the engineering knowledge and practical skills to develop and implement creative solutions to engineering problems encountered with renewable energy technologies. By looking at renewable energy capture and conversion, system design and analysis, project development and implementation, each modular chapter examines recent advances in specific renewable energy systems with detailed methods, calculations and worked examples. - Includes recent techniques used to design and model different renewable energy sources (RES) - Demonstrates how to use power electronics in renewable systems - Discusses how to identify, design, integrate and operate the most suitable technologies through key problems




Spacecraft Power Technologies


Book Description

Spacecraft Power Technologies is the first comprehensive text devoted to the technologies critical to the development of spacecraft electrical power systems. The science and engineering of solar, chemical, and nuclear systems are fully examined together with the constraints imposed by the space and thermal environments in which the systems must operate. Details of present technology and the history that led to the current state-of-the-art are presented at a level appropriate for the student as a textbook or the practicing engineer as a reference.




Solar Energy Conversion Systems


Book Description

Solar energy conversion requires a different mind-set from traditional energy engineering in order to assess distribution, scales of use, systems design, predictive economic models for fluctuating solar resources, and planning to address transient cycles and social adoption. Solar Energy Conversion Systems examines solar energy conversion as an integrative design process, applying systems thinking methods to a solid knowledge base for creators of solar energy systems. This approach permits different levels of access for the emerging broad audience of scientists, engineers, architects, planners, and economists. Traditional texts in solar energy engineering have often emerged from mechanical or chemical engineering fields. Instead, Solar Energy Conversion Systems approaches solar energy conversion from the perspectives of integrative design, environmental technology, sustainability science, and materials science in the wake of amazing new thin films, polymers, and glasses developed by the optoelectronics and semiconductor industries. This is a new solar text for the new generation of green job designers and developers. It's highlighted with vignettes that break down solar conversion into useful stories and provides common points of reference, as well as techniques, for effective estimation of evolving technologies. - Contextualizes solar conversion for systems design and implementation in practical applications - Provides a complete understanding of solar power, from underlying science to essential economic outcomes - Analytical approach emphasizes systems simulations from measured irradiance and weather data rather than estimations from "rules of thumb" - Emphasizes integrative design and solar utility, where trans-disciplinary teams can develop sustainable solar solutions that increase client well-being and ecosystems services for a given locale




Direct Energy Conversion


Book Description

Direct Energy Conversion discusses both the physics behind energy conversion processes and a wide variety of energy conversion devices. A direct energy conversion process converts one form of energy to another through a single process. The first half of this book surveys multiple devices that convert to or from electricity including piezoelectric devices, antennas, solar cells, light emitting diodes, lasers, thermoelectric devices, and batteries. In these chapters, physical effects are discussed, terminology used by engineers in the discipline is introduced, and insights into material selection is studied. The second part of this book puts concepts of energy conversion in a more abstract framework. These chapters introduce the idea of calculus of variations and illuminate relationships between energy conversion processes.This peer-reviewed book is used for a junior level electrical engineering class at Trine University. However, it is intended not just for electrical engineers. Direct energy conversion is a fascinating topic because it does not fit neatly into a single discipline. This book also should be of interest to physicists, chemists, mechanical engineers, and other researchers interested in an introduction to the energy conversion devices studied by scientists and engineers in other disciplines.