Renewable Energy and Wildlife Conservation


Book Description

Brings together disparate conversations about wildlife conservation and renewable energy, suggesting ways these two critical fields can work hand in hand. Renewable energy is often termed simply "green energy," but its effects on wildlife and other forms of biodiversity can be quite complex. While capturing renewable resources like wind, solar, and energy from biomass can require more land than fossil fuel production, potentially displacing wildlife habitat, renewable energy infrastructure can also create habitat and promote species health when thoughtfully implemented. The authors of Renewable Energy and Wildlife Conservation argue that in order to achieve a balanced plan for addressing these two crucially important sustainability issues, our actions at the nexus of these fields must be directed by current scientific information related to the ecological effects of renewable energy production. Synthesizing an extensive, rapidly growing base of research and insights from practitioners into a single, comprehensive resource, contributors to this volume • describe processes to generate renewable energy, focusing on the Big Four renewables—wind, bioenergy, solar energy, and hydroelectric power • review the documented effects of renewable energy production on wildlife and wildlife habitats • consider current and future policy directives, suggesting ways industrial-scale renewables production can be developed to minimize harm to wildlife populations • explain recent advances in renewable power technologies • identify urgent research needs at the intersection of renewables and wildlife conservation Relevant to policy makers and industry professionals—many of whom believe renewables are the best path forward as the world seeks to meet its expanding energy needs—and wildlife conservationists—many of whom are alarmed at the rate of renewables-related habitat conversion—this detailed book culminates with a chapter underscoring emerging opportunities in renewable energy ecology. Contributors: Edward B. Arnett, Brian B. Boroski, Regan Dohm, David Drake, Sarah R. Fritts, Rachel Greene, Steven M. Grodsky, Amanda M. Hale, Cris D. Hein, Rebecca R. Hernandez, Jessica A. Homyack, Henriette I. Jager, Nicole M. Korfanta, James A. Martin, Christopher E. Moorman, Clint Otto, Christine A. Ribic, Susan P. Rupp, Jake Verschuyl, Lindsay M. Wickman, T. Bently Wigley, Victoria H. Zero




Alternative Energy Sources


Book Description

Alternative Energy Sources is designed to give the reader, a clear view of the role each form of alternative energy may play in supplying the energy needs of the human society in the near future (20-50 years). The two first chapters on "energy demand and supply" and "environmental effects," set the tone as to why alternative energy is essential for the future. The third chapter gives the laws of energy conversion processes, as well as the limitations of converting one energy form to another. The section on exergy gives a quantitative background on the capability/potential of each energy source to produce power. The fourth, fifth and sixth chapters are expositions of fission and fusion nuclear energy, the power plants that may produce power from these sources and the issues that will frame the public debate on nuclear energy. The following five chapters include descriptions of the most common renewable energy sources (wind, solar, geothermal, biomass, hydroelectric) some of the less common sources (e.g. tidal and wave energy). The emphasis of these chapters will be on the global potential of each source, the engineering/technical systems that are used in harnessing the potential of each source, the technological developments that will contribute to wider utilization of the sources and environmental effects associated with their wider use. The last three chapters are: "energy storage," which will become an important issue if renewable energy sources are used widely. The fourteen chapters in the book have been chosen so that one may fit a semester University course around this book. At the end of every chapter, there are 10-20 problems and 1-3 suggestions of semester projects that may be assigned to students for further research.




The Power of Renewables


Book Description

The United States and China are the world's top two energy consumers and, as of 2010, the two largest economies. Consequently, they have a decisive role to play in the world's clean energy future. Both countries are also motivated by related goals, namely diversified energy portfolios, job creation, energy security, and pollution reduction, making renewable energy development an important strategy with wide-ranging implications. Given the size of their energy markets, any substantial progress the two countries make in advancing use of renewable energy will provide global benefits, in terms of enhanced technological understanding, reduced costs through expanded deployment, and reduced greenhouse gas (GHG) emissions relative to conventional generation from fossil fuels. Within this context, the U.S. National Academies, in collaboration with the Chinese Academy of Sciences (CAS) and Chinese Academy of Engineering (CAE), reviewed renewable energy development and deployment in the two countries, to highlight prospects for collaboration across the research to deployment chain and to suggest strategies which would promote more rapid and economical attainment of renewable energy goals. Main findings and concerning renewable resource assessments, technology development, environmental impacts, market infrastructure, among others, are presented. Specific recommendations have been limited to those judged to be most likely to accelerate the pace of deployment, increase cost-competitiveness, or shape the future market for renewable energy. The recommendations presented here are also pragmatic and achievable.




Alternative Energy Resources


Book Description

This book reviews alternative and renewable energy resources in order to pave the way for a more sustainable production in the future. A multi-disciplinary team of authors provides a comprehensive overview of current technologies and future trends, including solar technologies, wind energy, hydropower, microbial electrochemical systems and various biomass sources for biofuel production. In addition, the book focuses on solutions for developing countries. Conventional energy sources are finite, and estimates suggest that they will be exhausted within a few decades. Finding a solution to this problem is a global challenge, and developing countries in particular are still highly dependent on fossil fuels due to their rapidly growing populations accompanied by a huge growth in primary energy consumption. Moreover, the most common conventional energy sources (coal and petroleum) are non-sustainable since their combustion exponentially increases greenhouse gas emissions. As such, there is a pressing need for clean energy based on alternative or renewable resources, not only to ensure energy supplies at an affordable price but also to protect the environment.




Renewable Hydrogen Production


Book Description

Renewable Hydrogen Production provides a comprehensive analysis of renewable energy-based hydrogen production. Through simulation analysis and experimental investigations, the book provides fundamentals, compares existing hydrogen production applications, discusses novel technologies, and offers insights into the future directions of this rapidly evolving industry. This all-in-one resource on how to produce clean hydrogen production to enhance energy efficiency and support sustainable development will appeal to a wide variety of industries and professionals. - Addresses the production of clean hydrogen from the major sources of renewable energy, including wind, solar, geothermal, hydro, biomass and marine energy - Presents information from simulations and experimental analyses - Offers insights into the future of renewable hydrogen production




Renewable energy conversion systems


Book Description

Fundamentals of Renewable Energy Systems goes beyond theoretical aspects of advances in renewable energy and addresses future trends. By focusing on the design of developing technologies, relevant operation and detailed background and an understanding of the application of power electronics and thermodynamics processes in renewable energy, this book provides an analysis of advancing energy systems. The book will be of interest to engineering graduates, researchers, professors and industry professionals involved in the renewable energy sector and is ideal for advanced engineering courses dealing with renewable energy, sources, thermal and electrical energy production and sustainability. With increasing focus on developing low carbon energy production, audiences need to have the engineering knowledge and practical skills to develop and implement creative solutions to engineering problems encountered with renewable energy technologies. By looking at renewable energy capture and conversion, system design and analysis, project development and implementation, each modular chapter examines recent advances in specific renewable energy systems with detailed methods, calculations and worked examples. - Includes recent techniques used to design and model different renewable energy sources (RES) - Demonstrates how to use power electronics in renewable systems - Discusses how to identify, design, integrate and operate the most suitable technologies through key problems




Energy


Book Description

Energy Global energy demand has more than doubled since 1970. The use of energy is strongly related to almost every conceivable aspect of development: wealth, health, nutrition, water, infrastructure, education and even life expectancy itself are strongly and significantly related to the consumption of energy per capita. Many development indicators are strongly related to per-capita energy consumption. Fossil fuel is the most conventional source of energy but also increases greenhouse gas emissions. The economic development of many countries has come at the cost of the environment. However, it should not be presumed that a reconciliation of the two is not possible. The nexus concept is the interconnection between the resource energy, water, food, land, and climate. Such interconnections enable us to address trade-offs and seek synergies among them. Energy, water, food, land, and climate are essential resources of our natural environment and support our quality of life. Competition between these resources is increasing globally and is exacerbated by climate change. Improving resilience and securing resource availability would require improving resource efficiency. Many policies and programs are announced nationally and internationally for replacing the conventional mode and also emphasizing on conservation of fossil fuels and reuse of exhausted energy, so a gap in implications and outcomes can be broadly traced by comparing the data. This book aims to highlight problems and solutions related to conventional energy utilization, formation, and multitudes of ecological impacts and tools for the conservation of fossil fuels. The book also discusses modern energy services as one of the sustainable development goals and how the pressure on resource energy disturbs the natural flows. The recent advances in alternative energy sources and their possible future growth are discussed and on how conventional energy leads to greenhouse gas formation, which reduces energy use efficiency. The different policies and models operating is also addressed, and the gaps that remained between them. Climate change poses a challenge for renewable energy, and thus it is essential to identify the factors that would reduce the possibility of relying on sustainable energy sources. This book will be of interest to researchers and stakeholders, students, industries, NGOs, and governmental agencies directly or indirectly associated with energy research.




Integration of Alternative Sources of Energy


Book Description

A unique electrical engineering approach to alternative sources ofenergy Unlike other books that deal with alternative sources of energyfrom a mechanical point of view, Integration of Alternative Sourcesof Energy takes an electrical engineering perspective. Moreover,the authors examine the full spectrum of alternative and renewableenergy with the goal of developing viable methods of integratingenergy sources and storage efficiently. Readers become thoroughlyconversant with the principles, possibilities, and limits ofalternative and renewable energy. The book begins with a general introduction and then reviewsprinciples of thermodynamics. Next, the authors explore both commonand up-and-coming alternative energy sources, including hydro,wind, solar, photovoltaic, thermosolar, fuel cells, and biomass.Following that are discussions of microturbines and inductiongenerators, as well as a special chapter dedicated to energystorage systems. After setting forth the fundamentals, the authorsfocus on how to integrate the various energy sources for electricalpower production. Discussions related to system operation,maintenance, and management, as well as standards forinterconnection, are also set forth. Throughout the book, diagrams are provided to demonstrate theelectrical operation of all the systems that are presented. Inaddition, extensive use of examples helps readers better grasp howintegration of alternative energy sources can beaccomplished. The final chapter gives readers the opportunity to learn about theHOMER Micropower Optimization Model. This computer model, developedby the National Renewable Energy Laboratory (NREL), assists in thedesign of micropower systems and facilitates comparisons of powergeneration techniques. Readers can download the software from theNREL Web site. This book is a must-read for engineers, consultants, regulators,and environmentalists involved in energy production and delivery,helping them evaluate alternative energy sources and integrate theminto an efficient energy delivery system. It is also a superiortextbook for upper-level undergraduates and graduate students.




Sustainable and Clean Energy Production Technologies


Book Description

This edited book is a comprehensive collection of chapters on various clean energy technology such as solar energy, waste biomass as energy, hydro-electricity generation, biodiesel production from biomass and strategies to cater the demand of clean renewable energy. Clean energy technologies also enhance economic growth by increasing the supply of energy demand and tackling environmental challenges and their impacts due to the use of other conventional sources of energy. The conventional/non-conventional energy production methods are efficient but it has adverse effects on environment and human health. As environmental concerns are not avoidable therefore the necessity of clean energy production comes in to the picture. The clean energy can be produced by different wastes which are caused for the environmental pollution. This book covers various aspects of new and renewable clean energy production technology and its utilization in different fields. This is a useful reading material for students and researchers involved in clean energy study.




Alternative Energy


Book Description

The second edition of Alternative Energy: Political, Economic, and Social Feasibility builds on the first edition, but with significant updates on dramatic changes within the renewable energy sector over the last decade. Christopher Simon discusses the basic technical aspects of major renewable energy systems and technological developments and considers the impact of politics on energy policy using contemporary theories of public policy—such as, Advocacy Coalition Framework (ACF), Punctuated Equilibrium (PE), Narrative Policy Framework, and Policy Diffusion—as well as discussing the evolution of the social feasibility of renewable energy. The author expands his discussion of alternative energy solutions to consider nuclear power developments and feasibility in the post-Fukushima policy environment. International commitment to renewable energy is also addressed.