Energy Storage in the Emerging Era of Smart Grids


Book Description

Reliable, high-efficient and cost-effective energy storage systems can undoubtedly play a crucial role for a large-scale integration on power systems of the emerging "distributed generation" (DG) and for enabling the starting and the consolidation of the new era of so called smart-grids. A non exhaustive list of benefits of the energy storage properly located on modern power systems with DG could be as follows: it can increase voltage control, frequency control and stability of power systems, it can reduce outages, it can allow the reduction of spinning reserves to meet peak power demands, it can reduce congestion on the transmission and distributions grids, it can release the stored energy when energy is most needed and expensive, it can improve power quality or service reliability for customers with high value processes or critical operations and so on. The main goal of the book is to give a date overview on: (I) basic and well proven energy storage systems, (II) recent advances on technologies for improving the effectiveness of energy storage devices, (III) practical applications of energy storage, in the emerging era of smart grids.




Power Electronics in Renewable Energy Systems and Smart Grid


Book Description

The comprehensive and authoritative guide to power electronics in renewable energy systems Power electronics plays a significant role in modern industrial automation and high- efficiency energy systems. With contributions from an international group of noted experts, Power Electronics in Renewable Energy Systems and Smart Grid: Technology and Applications offers a comprehensive review of the technology and applications of power electronics in renewable energy systems and smart grids. The authors cover information on a variety of energy systems including wind, solar, ocean, and geothermal energy systems as well as fuel cell systems and bulk energy storage systems. They also examine smart grid elements, modeling, simulation, control, and AI applications. The book's twelve chapters offer an application-oriented and tutorial viewpoint and also contain technology status review. In addition, the book contains illustrative examples of applications and discussions of future perspectives. This important resource: Includes descriptions of power semiconductor devices, two level and multilevel converters, HVDC systems, FACTS, and more Offers discussions on various energy systems such as wind, solar, ocean, and geothermal energy systems, and also fuel cell systems and bulk energy storage systems Explores smart grid elements, modeling, simulation, control, and AI applications Contains state-of-the-art technologies and future perspectives Provides the expertise of international authorities in the field Written for graduate students, professors in power electronics, and industry engineers, Power Electronics in Renewable Energy Systems and Smart Grid: Technology and Applications offers an up-to-date guide to technology and applications of a wide-range of power electronics in energy systems and smart grids.




Energy Storage in the Emerging Era of Smart Grids


Book Description

Gas chromatography (GC) is a common type of chromatography used in analytical chemistry for separating and analysing compounds that can be vaporized without decomposition. In gas chromatography, the components of a sample are dissolved in a solvent and vaporized so as to separate the analytes by distributing the sample between two phases: a stationary phase and a mobile phase. Gas chromatography is in principle similar to column chromatography, but has several notable differences. as chromatography is also similar to fractional distillation, since both processes separate the components of a mixture primarily based on boiling point (or vapour pressure) differences. The mobile phase is a chemically inert gas that serves to carry the molecules of the analyte through the heated column. Gas chromatography is one of the sole forms of chromatography that does not utilize the mobile phase for interacting with the analyte. The stationary phase is either a solid adsorbant, termed gas-solid chromatography (GSC), or a liquid on an inert support, termed gas-liquid chromatography (GLC). In organic chemistry, liquid-solid column chromatography is frequently used to separate organic compounds in solution. Among the various types of gas chromatography, gas-liquid chromatography is the method most commonly used to separate organic compounds. The combination of gas chromatography and mass spectrometry is a vital tool in the identification of molecules. A typical gas chromatography comprises an injection port, a column, carrier gas flow control equipment, ovens and heaters for maintaining temperatures of the injection port and the column, an integrator chart recorder and a detector. The book, Advanced Gas Chromatography, is intended to cover numerous facets of applications ranging from basic biological, biomedical applications to industrial applications. The book analyse new developments in chromatographic columns, micro extraction techniques, derivatisation techniques and pyrolysis techniques. The book also focuses on various features of basic chromatography techniques and is appropriate for both young and advanced chromatographers. It includes some new developments in chromatography. This book is an invaluable tool for chemists as well as non-chemists employed in gas chromatography.




Energy Storage in the Emerging Era of Smart Grids


Book Description

Reliable, high-efficient and cost-effective energy storage systems can undoubtedly play a crucial role for a large-scale integration on power systems of the emerging "distributed generation" (DG) and for enabling the starting and the consolidation of the new era of so called smart-grids. A non exhaustive list of benefits of the energy storage properly located on modern power systems with DG could be as follows: it can increase voltage control, frequency control and stability of power systems, it can reduce outages, it can allow the reduction of spinning reserves to meet peak power demands, it can reduce congestion on the transmission and distributions grids, it can release the stored energy when energy is most needed and expensive, it can improve power quality or service reliability for customers with high value processes or critical operations and so on. The main goal of the book is to give a date overview on: (I) basic and well proven energy storage systems, (II) recent advances on technologies for improving the effectiveness of energy storage devices, (III) practical applications of energy storage, in the emerging era of smart grids.




Energy Storage in Electric Power Grids


Book Description

This book deals with the management and valuation of energy storage in electric power grids, highlighting the interest of storage systems in grid applications and developing management methodologies based on artificial intelligence tools. The authors highlight the importance of storing electrical energy, in the context of sustainable development, in "smart grids", and discuss multiple services that storing electrical energy can bring. Methodological tools are provided to build an energy management system storage following a generic approach. These tools are based on causal formalisms, artificial intelligence and explicit optimization techniques and are presented throughout the book in connection with concrete case studies.




Research Anthology on Smart Grid and Microgrid Development


Book Description

"This reference book covers the latest innovations and trends within smart grid and microgrid development, detailing benefits, challenges, and opportunities, that will help readers to fully understand the current opportunities that smart grids and microgrids present around the world"--




Optimizing and Measuring Smart Grid Operation and Control


Book Description

Smart grid (SG), also called intelligent grid, is a modern improvement of the traditional power grid that will revolutionize the way electricity is produced, delivered, and consumed. Studying key concepts such as advanced metering infrastructure, distribution management systems, and energy management systems will support the design of a cost-effective, reliable, and efficient supply system, and will create a real-time bidirectional communication means and information exchange between the consumer and the grid operator of electric power. Optimizing and Measuring Smart Grid Operation and Control is a critical reference source that presents recent research on the operation, control, and optimization of smart grids. Covering topics that include phase measurement units, smart metering, and synchrophasor technologies, this book examines all aspects of modern smart grid measurement and control. It is designed for engineers, researchers, academicians, and students.




Smart Grid


Book Description

The creation of a flexible, efficient, digitized, dependable and resilient power grid may well be the best route to increasing energy efficiency & security, as well as boosting the potential of renewable & distributed power sources. This book covers smart grids from A-Z, providing a complete treatment of the topic, covering both policy and technology, explaining the most recent innovations supporting its development, and clarifying how the smart grid can support the integration of renewable energy resources. Among the most important topics included are smart metering, renewable energy storage, plug-in hybrids, flexible demand response, strategies for offsetting intermittency issues, micro-grids for off-grid communities, and specific in-depth coverage of wind and solar power integration. The content draws lessons from an international panel of contributors, whose diverse experiences implementing smart grids will help to provide templates for success. - Provides critical information on the technological, design and policy issues that must be taken into account to ensure that the smart grid is implemented successfully - Demonstrates how smart grids can help utilities adhere to increased renewable portfolio standards - Provides examples of successful microgrid/smart metering projects from around the world that can act as templates for developers, operators and investors embarking upon similar projects




Integration of Renewable Energy Sources with Smart Grid


Book Description

INTEGRATION OF RENEWABLE ENERGY SOURCES WITH SMART GRID Provides comprehensive coverage of renewable energy and its integration with smart grid technologies. This book starts with an overview of renewable energy technologies, smart grid technologies, and energy storage systems and covers the details of renewable energy integration with smart grid and the corresponding controls. It also provides an enhanced perspective on the power scenario in developing countries. The requirement of the integration of smart grid along with the energy storage systems is deeply discussed to acknowledge the importance of sustainable development of a smart city. The methodologies are made quite possible with highly efficient power convertor topologies and intelligent control schemes. These control schemes are capable of providing better control with the help of machine intelligence techniques and artificial intelligence. The book also addresses modern power convertor topologies and the corresponding control schemes for renewable energy integration with smart grid. The design and analysis of power converters that are used for the grid integration of solar PV along with simulation and experimental results are illustrated. The protection aspects of the microgrid with power electronic configurations for wind energy systems are elucidated. The book also discusses the challenges and mitigation measure in renewable energy integration with smart grid. Audience The core audience is hardware and software engineers working on renewable energy integration related projects, microgrids, smart grids and computing algorithms for converter and inverter circuits. Researchers and students in electrical, electronics and computer engineering will also benefit reading the book.




Energy Storage Systems


Book Description

Proceedings of the NATO Advanced Study Institute, Çesme, Izmir, Turkey, 27 June-8 July, 1988