Reactor and Process Design in Sustainable Energy Technology


Book Description

Reactor Process Design in Sustainable Energy Technology compiles and explains current developments in reactor and process design in sustainable energy technologies, including optimization and scale-up methodologies and numerical methods. Sustainable energy technologies that require more efficient means of converting and utilizing energy can help provide for burgeoning global energy demand while reducing anthropogenic carbon dioxide emissions associated with energy production. The book, contributed by an international team of academic and industry experts in the field, brings numerous reactor design cases to readers based on their valuable experience from lab R&D scale to industry levels. It is the first to emphasize reactor engineering in sustainable energy technology discussing design. It provides comprehensive tools and information to help engineers and energy professionals learn, design, and specify chemical reactors and processes confidently. - Emphasis on reactor engineering in sustainable energy technology - Up-to-date overview of the latest reaction engineering techniques in sustainable energy topics - Expert accounts of reactor types, processing, and optimization - Figures and tables designed to comprehensively present concepts and proceduresHundreds of citations drawing on many most recent and previously published works on the subject




Energy Technology Innovation


Book Description

An edited volume on factors determining success or failure of energy technology innovation, for researchers and policy makers.




Energy Technologies and Economics


Book Description

This is an easy-to-read textbook providing the reader with the basis to comprehend the major energy technologies from a physical and economical perspective. The journey through the book begins with some background theory on the physics and economics of energy. Major energy technologies (fossil, nuclear and renewable) are explored in-depth, explaining how they work and the costs involved. Finally, the journey ends by exploring the technical and economic feasibility of supplying the world by 2050 with sustainable energy only. Numerous examples are provided to allow the reader to relate important concepts to real-life. The reader’s understanding of the material can then be tested using the exercises at the end of each chapter. This textbook is the first to thoroughly present the physics and the economics of energy. It is intended for graduate students and practitioners interested in the field of energy. It also enables the general reader to distinguish between political statement and fact.




Marine Renewable Energy Technology and Environmental Interactions


Book Description

It is now widely recognized that there is a need for long-term secure and suitable sustainable forms of energy. Renewable energy from the marine environment, in particular renewable energy from tidal currents, wave and wind, can help achieve a sustainable energy future. Our understanding of environmental impacts and suitable mitigation methods associated with extracting renewable energy from the marine environment is improving all the time and it is essential that we be able to distinguish between natural and anthropocentric drivers and impacts. An overview of current understanding of the environmental implications of marine renewable energy technology is provided.




The Risks of Nuclear Energy Technology


Book Description

The book analyses the risks of nuclear power stations. The security concept of reactors is explained. Measures against the spread of radioactivity after a severe accident, accidents of core melting and a possible crash of an air plane on reactor containment are discussed. The book covers three scientific subjects of the safety concepts of Light Water Reactors: – A first part describes the basic safety design concepts of operating German Pressurized Water Reactors and Boiling Water Reactors including accident management measures introduced after the reactor accidents of Three Mile Island and Chernobyl. These safety concepts are also compared with the experiences of the Fukushima accidents. In addition, the safety design concepts of the future modern European Pressurized Water Reactor (EPR) and of the future modern Boiling Water Reactor SWR-1000 (KERENA) are presented. These are based on new safety research results of the past decades. – In a second, part the possible crash of military or heavy commercial air planes on reactor containment is analyzed. It is shown that reactor containments can be designed to resist to such an airplane crash. – In a third part, an online decision system is presented. It allows to analyze the distribution of radioactivity in the atmosphere and to the environment after a severe reactor accident. It provides data for decisions to be taken by authorities for the minimization of radiobiological effects to the population. This book appeals to readers who have an interest in save living conditions and some understanding for physics or engineering.




Solar Energy


Book Description

Solar Energy is an authoritative reference on the design of solar energy systems in building projects, with applications, operating principles, and simple tools for the construction, engineering, and design professional. The book simplifies the solar design and engineering process, providing sample documentation and special tools that provide all the information needed for the complete design of a solar energy system for buildings to enable mainstream MEP and design firms, and not just solar energy specialists, to meet the growing demand for solar energy systems in building projects.




Clean Disruption of Energy and Transportation


Book Description

The industrial age of energy and transportation will be over by 2030. Maybe before. Exponentially improving technologies such as solar, electric vehicles, and autonomous (self-driving) cars will disrupt and sweep away the energy and transportation industries as we know it. The same Silicon Valley ecosystem that created bit-based technologies that have disrupted atom-based industries is now creating bit- and electron-based technologies that will disrupt atom-based energy industries. Clean Disruption projections (based on technology cost curves, business model innovation as well as product innovation) show that by 2030: - All new energy will be provided by solar or wind. - All new mass-market vehicles will be electric. - All of these vehicles will be autonomous (self-driving) or semi-autonomous. - The new car market will shrink by 80%. - Even assuming that EVs don't kill the gasoline car by 2030, the self-driving car will shrink the new car market by 80%. - Gasoline will be obsolete. Nuclear is already obsolete. - Up to 80% of highways will be redundant. - Up to 80% of parking spaces will be redundant. - The concept of individual car ownership will be obsolete. - The Car Insurance industry will be disrupted. The Stone Age did not end because we ran out of rocks. It ended because a disruptive technology ushered in the Bronze Age. The era of centralized, command-and-control, extraction-resource-based energy sources (oil, gas, coal and nuclear) will not end because we run out of petroleum, natural gas, coal, or uranium. It will end because these energy sources, the business models they employ, and the products that sustain them will be disrupted by superior technologies, product architectures, and business models. This is a technology-based disruption reminiscent of how the cell phone, Internet, and personal computer swept away industries such as landline telephony, publishing, and mainframe computers. Just like those technology disruptions flipped the architecture of information and brought abundant, cheap and participatory information, the clean disruption will flip the architecture of energy and bring abundant, cheap and participatory energy. Just like those previous technology disruptions, the Clean Disruption is inevitable and it will be swift.




Wind Energy Technology


Book Description

A text for distance learning for energy engineers at the graduate or advanced undergraduate level. Explains the basic principles of wind energy conversion; examines how they influence the design of modern wind turbines; and discusses project development and engineering, focusing on economic and environmental considerations. Annotation copyrighted by Book News, Inc., Portland, OR




Sustainable Energy Technology and Policies


Book Description

This book presents a state-of-the-art compilation focusing on both technological and policy aspects of sustainable energy production and consumption, which deals with issues like the need for and planning of smart cities, alternative transport fuel options, sustainable power production, pollution control technologies etc. The book comprises contributions from experts from all over the world, and addresses energy sustainability from different viewpoints. Specifically, the book focuses on energy sustainability in the Indian scenario with a background of the global perspective. Contributions from academia, policy makers and industry are included to address the challenge from different perspectives. The contents of this book will prove useful to researchers, professionals, and policy makers working in the area of green and sustainable energy.




Energy Technology 2015


Book Description

This book covers various technological aspects of sustainable energy ecosystems and processes that improve energy efficiency, and reduce and sequestrate carbon dioxide (CO2) and other greenhouse emissions. Papers emphasize the need for sustainable technologies in extractive metallurgy, materials processing and manufacturing industries with reduced energy consumption and CO2 emission. Industrial energy efficient technologies include innovative ore beneficiation, smelting technologies, recycling, and waste heat recovery. The book also contains contributions from all areas of non-nuclear and non-traditional energy sources, including renewable energy sources such as solar, wind, and biomass. Papers from the following symposia are presented in the book: Energy Technologies and Carbon Dioxide Management Recycling and Sustainability Update Magnetic Materials for Energy Applications V Sustainable Energy and Layered Double Hydroxides