Energy Technology 2020: Recycling, Carbon Dioxide Management, and Other Technologies


Book Description

This collection addresses the pressing needs for sustainable technologies with reduced energy consumption and environmental pollutions and the development and application of alternative sustainable energy to maintain a green environment and efficient and long-lasting energy supply. Contributors represent both industry and academia and focus on new and efficient energy technologies including innovative ore beneficiation, smelting technologies, and recycling and waste heat recovery, as well as emerging novel energy solutions. The volume also covers a broad range of mature and new technological aspects of sustainable energy ecosystems, processes that improve energy efficiency, reduce thermal emissions, and reduce carbon dioxide and other greenhouse emissions. Authors also explore the valorization of materials and their embodied energy including byproducts or coproducts from ferrous and nonferrous industries, batteries, electronics, and other complex secondary materials.




Management of Electronic Waste


Book Description

MANAGEMENT OF ELECTRONIC WASTE Holistic view of the current and future trends in electronic waste management, focusing on recycling, technologies, and regulations Management of Electronic Waste delivers a complete overview of all aspects related to the toxicity characterization of electronic wastes, along with other important topics including resource recovery, recycling strategies, biotechnological advancements, and current perspectives on waste generation and management. The book presents hazards associated with conventional recycling methods and highlights environmentally compatible economic approaches for resource recovery, along with eco-friendly strategies for management of electronic wastes. The high metallic content, heterogeneous and composite nature of e-wastes make them a rich secondary reservoir of metals. The book explores the valuable potential of e-waste and highlights the eco-friendly, sustainable technologies and recycling strategies for the profitable and effective conversion of waste to wealth. Written by a highly qualified and internationally renowned author, Management of Electronic Waste covers sample topics such as: Rise of e-waste generation paired with rising economies and mounting demand for electrical and electronic devices, with a country-by-country breakdown Status of e-waste management and recycling efforts around the world, along with key processes that drive e-waste recycling Macroeconomic trends between global demand and supply for metal resources and the transition of linear to circular economy Bioleaching, an economic and green approach for recovery of metals, from e-waste and other low grade metal repositories Different metallurgical approaches for extraction and recovery of resources from e-waste and their pros and cons Filling a gap on the understudied biotechnological recycling techniques and methods for mitigating environmental pollution caused by electronic waste, Management of Electronic Waste serves as an excellent guide on the subject for electronic waste producers, consumers, recycling industries, policy and law makers, academicians, and researchers.




Environmental Management of Waste Electrical and Electronic Equipment


Book Description

Environmental Management of Waste Electrical and Electronic Equipment illustrates the socioeconomic, technical and environmental perspectives of WEEE, allowing for a better understanding on how to manage this rapidly growing waste stream. The book addresses discharge of WEEE into ecosystems, occupational exposure to hazardous components of WEEE, and loss of recoverable resources, bridging the gap between community and waste management. By providing in-depth analysis and step-by-step descriptions of environmental strategies and procedures for managing electrical and electronic waste, this book is a valuable resource for environmental scientists, environmental engineers, and waste management professionals to achieve sustainability in WEEE. - Presents the latest knowledge on the origin, identification and adverse effects of WEEE on humans and ecosystems - Offers up-to-date analysis on environmental management tools, such as LCA, health risk, legalization, and policies for sustainable solutions for Waste Electrical and Electronic Equipment (WEEE) - Includes details and analysis of the novel approaches proposed in recent years for resource recovery from WEEE




Sustainable Energy Storage in the Scope of Circular Economy


Book Description

Sustainable Energy Storage in the Scope of Circular Economy Comprehensive resource reviewing recent developments in the design and application of energy storage devices Sustainable Energy Storage in the Scope of Circular Economy reviews the recent developments in energy storage devices based on sustainable materials within the framework of the circular economy, addressing the sustainable design and application of energy storage devices with consideration of the key advantages and remaining challenges in this rapidly evolving research field. Topics covered include: Sustainable materials for batteries and fuel cell devices Multifunctional sustainable materials for energy storage Energy storage devices in the scope of the Internet of Things Sustainable energy storage devices and device design for sensors and actuators Waste prevention for energy storage devices based on second life and recycling procedures With detailed information on today’s most effective energy storage devices, Sustainable Energy Storage in the Scope of Circular Economy is a key resource for academic researchers, industrial scientists and engineers, and students in related programs of study who wish to understand the state of the art in this field.




Technology Innovation for the Circular Economy


Book Description

TECHNOLOGY INNOVATION FOR THE CIRCULAR ECONOMY The book comprises 56 peer-reviewed chapters comprehensively covering in-depth areas of circular economy design, planning, business models, and enabling technologies. Some of the greatest opportunities for innovation in the circular economy are in remanufacturing, refurbishment, reuse, and recycling. Critical to its growth, however, are developments in product design approaches and the manufacturing business model that are often met with challenges in the current, largely linear economies of today’s global manufacturing chains. The conference hosted by the REMADE Institute in Rochester, NY, brought together U.S. and international researchers, industry engineers, technologists, and policymakers, to discuss the myriad intertwining issues relating to the circular economy. This book consists of 56 chapters in 10 distinct parts covering broad areas of research and applications in the circular economy area. The first four parts explore the system level work related to circular economy approaches, models and advancements including the use of artificial intelligence (AI) and machine learning to guide implementation, as well as design for circularity approaches. Mechanical and chemical recycling technologies follow, highlighting some of the most advanced research in those areas. Next, innovation in remanufacturing is addressed with descriptions of some of the most advanced work in this field. This is followed by tire remanufacturing and recycling, highlighting innovative technologies in addressing the volume of end-of-use tires. Pathways to net-zero emissions in manufacturing of materials concludes the book, with a focus on industrial decarbonization. Audience This book has a wide audience in academic institutes, business professionals and engineers in a variety of manufacturing industries. It will also appeal to economists and policymakers working on the circular economy, clean tech investors, industrial decision-makers, and environmental professionals.




Resource Recovery and Recycling from Waste Metal Dust


Book Description

This book examines resource recovery and recycling from waste metal dust, including currently used techniques for waste processing and recycling and their applications, with practical examples and economic potentials of the processes. The focus of this book is on resource recovery by suitable treatments and techniques, including those of recovery by-products. For the first time, this book provides a comprehensive, one-stop reference including seminal principles and methods, the advantages and disadvantages of the processes discussed, and the economics of the technology. It will serve as a technical reference for working scientists and engineers, while serving as an educational reference to students studying the waste recovery of metals.




Energy Technology 2017


Book Description

This collection focuses on energy efficient technologies including innovative ore beneficiation, smelting technologies, recycling and waste heat recovery. The volume also covers various technological aspects of sustainable energy ecosystems, processes that improve energy efficiency, reduce thermal emissions, and reduce carbon dioxide and other greenhouse emissions. Papers addressing renewable energy resources for metals and materials production, waste heat recovery and other industrial energy efficient technologies, new concepts or devices for energy generation and conversion, energy efficiency improvement in process engineering, sustainability and life cycle assessment of energy systems, as well as the thermodynamics and modeling for sustainable metallurgical processes are included. This volume also offers topics on CO2 sequestration and reduction in greenhouse gas emissions from process engineering, sustainable technologies in extractive metallurgy, as well as the materials processing and manufacturing industries with reduced energy consumption and CO2 emission. Contributions from all areas of non-nuclear and non-traditional energy sources, such as solar, wind, and biomass are also included in this volume.Papers from the following symposia are presented in the book:Energy TechnologiesAdvances in Environmental Technologies: Recycling and Sustainability Joint SessionDeriving Value from Challenging Waste Materials: Recycling and Sustainability Joint SessionSolar Cell Silicon




Sustainable Strategies in Organic Electronics


Book Description

Sustainable Strategies in Organic Electronics reviews green materials and devices, sustainable processes in electronics, and the reuse, recycling and degradation of devices. Topics addressed include large-scale synthesis and fabrication of safe device materials processes that neither use toxic reagents, solvents or produce toxic by-products. Emerging opportunities such as new synthetic approaches for enabling the commercialization of pi-conjugated polymer-based devices are explored, along with new efforts towards incorporating materials from renewable resources for a low carbon footprint. Finally, the book discusses the latest advances towards device biodegradability and recycling. It is suitable for materials scientists and engineers, chemists, physicists in academia and industry. - Discusses emerging opportunities for green materials, synthesis and fabrication of organic electronics - Reviews the challenges of integration of sustainable strategies in large-scale manufacturing of organic electronics - Provides an overview of green materials and solvents that can be used as alternatives to toxic materials for organic electronics applications




Vanadium in Soils and Plants


Book Description

Vanadium is an essential element for humans and animals. The toxicity of vanadium at higher concentrations could be a global environmental concern and a significant issue for both environmental protection and economic benefits. The relevance of anthropogenic vanadium in the environment has increased significantly in recent years due to an increased demand for vanadium in high-temperature industrial activities. This book summarizes vanadium’s current research and explains its behavior and mobilization in the environment, especially in soils, sediments, water and plants. Through case studies from various countries, it discusses critical limits set and risk assessment approaches and remediation approaches of vanadium-contaminated soils. FEATURES Provides a comprehensive overview of vanadium in the total environment Covers the role of vanadium in various environments such as soils, sediments, water and plants Includes bioavailability studies and further case studies from various countries around the world Focuses on a better understanding of biogeochemical processes of vanadium Is written by international experts who present the current stage of the knowledge including innovative remediation and management approaches of vanadium-contaminated sites This book will be of use to upper-level undergraduate and graduate students taking courses in soil science, environmental science, soil ecology, water science, plant science, ecotoxicology, geology and geography as well as scientists, lecturers, environmental and technical engineers, ecologists, applied ecological scientists and managers.




Perspectives on Deep-Sea Mining


Book Description

This book is a sequel to ’Deep-Sea Mining: Resource Potential, Technical and Environmental Considerations’ (2017) and ‘Environmental Issues of Deep-Sea Mining: Impacts, Consequences and Policy Perspectives’ (2019), and aims to provide a comprehensive volume on different perspectives of deep-sea mining from specialists around the world. The work is timely, as deep-sea minerals continue to enthuse researchers involved in activities such as ascertaining their potential as alternative sources for critical metals for green energy and other industrial applications, as well as technology development for their sustainable exploration and exploitation, while addressing environmental concerns. With a steady increase in the number of contractors having exclusive rights over large tracts of seafloor in the ‘Area’, i.e. area beyond national jurisdictions, the International Seabed Authority, mandated with the responsibility of regulating such activities, is in the process of developing a code for exploitation of deep-sea minerals. These, coupled with growing interest among private entrepreneurs, investment companies and policy makers, underscore the need for updated information to be made available in one place on the subject of deep-sea mining. The book evaluates the potential and sustainability of mining for deep-sea minerals compared to other land-based deposits, the technologies needed for mining and processing of ores, the approach towards environmental monitoring and management, as well as the regulatory frameworks and legal challenges to manage deep-sea mining activities. The book is expected to serve as an important reference for all stakeholders including researchers, contractors, mining companies, regulators and NGOs involved in deep-sea mining.