Biomaterials, Artificial Organs and Tissue Engineering


Book Description

Maintaining quality of life in an ageing population is one of the great challenges of the 21st Century. This book summarises how this challenge is being met by multi-disciplinary developments of specialty biomaterials, devices, artificial organs and in-vitro growth of human cells as tissue engineered constructs.Biomaterials, Artificial Organs and Tissue Engineering is intended for use as a textbook in a one semester course for upper level BS, MS and Meng students. The 25 chapters are organized in five parts: Part one provides an introduction to living and man-made materials for the non-specialist; Part two is an overview of clinical applications of various biomaterials and devices; Part three summarises the bioengineering principles, materials and designs used in artificial organs; Part four presents the concepts, cell techniques, scaffold materials and applications of tissue engineering; Part five provides an overview of the complex socio-economic factors involved in technology based healthcare, including regulatory controls, technology transfer processes and ethical issues. - Comprehensive introduction to living and man-made materials - Looks at clinical applications of various biomaterials and devices - Bioengineering principles, materials and designs used in artificial organs are summarised




Engineered Living Materials


Book Description

This book will serve as a primer for readers to understand recent advances, applications, and current challenges in the field of Engineered Living Materials. The chapters cover core science and engineering research areas, including (1) advances in synthetic biology and genetic programmability for Engineered Living Materials, (2) functional Engineered Living Material for application in energy, electronics, and construction, and (3) novel manufacturing approaches for Engineered Living Materials at multiple scales. The emerging field of Engineered Living Materials represents a significant paradigm shift in materials design and synthesis, in which living cells are used to impart biologically active functionalities to manmade materials. The result is a genetically programmable augmentation of non-living matter to exhibit unprecedented life-like (i.e., living) capabilities. At the intersection of synthetic biology and materials science, the field of Engineered Living Materials exhibits unprecedented promise and potential to alter the way we synthesize new materials and design medical devices, fabrics, robotics, commodity polymers, and construction materials. Materials with attributes of living systems can be engineered with an ability to respond to their environment and designed to self-repair in response to physical or other stresses or detect the presence of specific stimuli, such as light, heat, pressure, or hazardous chemical compounds. Although nascent, scientists and researchers in the field of Engineered Living Materials have made marked advances in demonstrating a potential to revolutionize a multitude of science and engineering disciplines. This volume will define the current state of the art of Engineered Living Materials, and highlight grand opportunities and challenges that abound at the nexus of synthetic biology and materials science and engineering.




Biofabrication


Book Description

How engineered materials and machines powered by living biological cells can tackle technological challenges in medicine, agriculture, and global security. You are a biological machine whose movement is powered by skeletal muscle, just as a car is a machine whose movement is powered by an engine. If you can be built from the bottom up with biological materials, other machines can be as well. This is the conceptual starting point for biofabrication, the act of building with living cells--building with biology in the same way we build with synthetic materials. In this volume in the MIT Press Essential Knowledge series, Ritu Raman offers an accessible introduction to biofabrication, arguing that it can address some of our greatest technological challenges. After presenting the background information needed to understand the emergence and evolution of biofabrication and describing the fundamental technology that enables building with biology, Raman takes deep dives into four biofabrication applications that have the potential to affect our daily lives: tissue engineering, organs-on-a-chip, lab-grown meat and leather, and biohybrid machines. Organs-on-a-chip (devices composed of miniature model tissues), for example, could be used to test new medicine and therapies, and lab-grown meat could alleviate environmental damage done by animal farming. She shows that biological materials have abilities synthetic materials do not, including the ability to adapt dynamically to their environments. Exploring the principles of biofabrication, Raman tells us, should help us appreciate the beauty, adaptiveness, and persistence of the biological machinery that drives our bodies and our world.




Living Construction


Book Description

Modern biotechnologies give us unprecedented control of the fundamental building blocks of life. For designers, across a range of disciplines, emerging fields such as synthetic biology offer the promise of new sustainable materials and structures which may be grown, are self-assembling, self-healing and adaptable to change. While there is a thriving speculative discourse on the future of design in the age of biotechnology, there are few realized design applications. This book, the first in the Bio Design series, acts as a bridge between design speculation and scientific reality and between contemporary design thinking, in areas such as architecture, product design and fashion design, and the traditional engineering approaches which currently dominate biotechnologies. Filled with real examples, Living Construction reveals how living cells construct and transform materials through methods of fabrication and assembly at multiple scales and how designers can utilize these processes.




Engineered Biomimicry


Book Description

Engineered Biomimicry covers a broad range of research topics in the emerging discipline of biomimicry. Biologically inspired science and technology, using the principles of math and physics, has led to the development of products as ubiquitous as VelcroTM (modeled after the spiny hooks on plant seeds and fruits). Readers will learn to take ideas and concepts like this from nature, implement them in research, and understand and explain diverse phenomena and their related functions. From bioinspired computing and medical products to biomimetic applications like artificial muscles, MEMS, textiles and vision sensors, Engineered Biomimicry explores a wide range of technologies informed by living natural systems. Engineered Biomimicry helps physicists, engineers and material scientists seek solutions in nature to the most pressing technical problems of our times, while providing a solid understanding of the important role of biophysics. Some physical applications include adhesion superhydrophobicity and self-cleaning, structural coloration, photonic devices, biomaterials and composite materials, sensor systems, robotics and locomotion, and ultra-lightweight structures. - Explores biomimicry, a fast-growing, cross-disciplinary field in which researchers study biological activities in nature to make critical advancements in science and engineering - Introduces bioinspiration, biomimetics, and bioreplication, and provides biological background and practical applications for each - Cutting-edge topics include bio-inspired robotics, microflyers, surface modification and more




The Age of Living Machines: How Biology Will Build the Next Technology Revolution


Book Description

"Entertaining and prescient…Hockfield demonstrates how nature’s molecular riches may be leveraged to provide potential solutions to some of humanity’s existential challenges." —Adrian Woolfson, Science A century ago, discoveries in physics came together with engineering to produce an array of astonishing new technologies that radically reshaped the world: radios, televisions, aircraft, computers, and a host of still-evolving digital tools. Today, a new technological convergence—of biology and engineering—promises to create the tools necessary to tackle the threats we now face, including climate change, drought, famine, and disease World-renowned neuroscientist and academic leader Susan Hockfield describes the most exciting new developments and the scientists and engineers who helped to create them. Virus-built batteries. Cancer-detecting nanoparticles. Computer-engineered crops. Together, they highlight the promise of the technology revolution of the twenty-first century to overcome some of the greatest humanitarian, medical, and environmental challenges of our time.




Bioinspired Structures and Design


Book Description

Master simple to advanced biomaterials and structures with this essential text. Featuring topics ranging from bionanoengineered materials to bio-inspired structures for spacecraft and bio-inspired robots, and covering issues such as motility, sensing, control and morphology, this highly illustrated text walks the reader through key scientific and practical engineering principles, discussing properties, applications and design. Presenting case studies for the design of materials and structures at the nano, micro, meso and macro-scales, and written by some of the leading experts on the subject, this is the ideal introduction to this emerging field for students in engineering and science as well as researchers.




Opportunities in Biotechnology for Future Army Applications


Book Description

This report surveys opportunities for future Army applications in biotechnology, including sensors, electronics and computers, materials, logistics, and medical therapeutics, by matching commercial trends and developments with enduring Army requirements. Several biotechnology areas are identified as important for the Army to exploit, either by direct funding of research or by indirect influence of commercial sources, to achieve significant gains in combat effectiveness before 2025.




Biosurfaces


Book Description

Ideal as a graduate textbook, this title is aimed at helping design effective biomaterials, taking into account the complex interactions that occur at the interface when a synthetic material is inserted into a living system. Surface reactivity, biochemistry, substrates, cleaning, preparation, and coatings are presented, with numerous case studies and applications throughout. Highlights include: Starts with concepts and works up to real-life applications such as implantable devices, medical devices, prosthetics, and drug delivery technology Addresses surface reactivity, requirements for surface coating, cleaning and preparation techniques, and characterization Discusses the biological response to coatings Addresses biomaterial-tissue interaction Incorporates nanomechanical properties and processing strategies




Bioreactor System Design


Book Description

Describes the state-of-the-art techniques and methods involved in the design, operation, preparation and containment of bioreactor systems, taking into account the interrelated effects of variables associated with both upstream and downstream stages of the design process. The importance of the initial steps in the development of a bioprocess, such as strain and media selection, that have an overwhelming influence on all further operations, is emphasized.;This work is intended for biochemical, chemical and bioprocess engineers; biotechnologists; industrial biochemists; micro- and molecular biologists; food scientists; and upper-level undergraduate and graduate students in these disciplines.