Engineering Optics With Matlab® (Second Edition)


Book Description

This invaluable second edition provides more in-depth discussions and examples in various chapters. Based largely on the authors' own in-class lectures as well as research in the area, the comprehensive textbook serves two purposes. The first introduces some traditional topics such as matrix formalism of geometrical optics, wave propagation and diffraction, and some fundamental background on Fourier optics. The second presents the essentials of acousto-optics and electro-optics, and provides the students with experience in modeling the theory and applications using a commonly used software tool MATLAB®.




Engineering Optics with MATLAB


Book Description

This invaluable second edition provides more in-depth discussions and examples in various chapters. Based largely on the authors' own in-class lectures as well as researchers in the area, the comprehensive textbook serves two purposes. The first introduces some traditional topics such as matrix formalism of geometrical optics, wave propagation and diffraction, and some fundamental background on Fourier optics. The second presents the essentials of acousto-optics and electro-optics, and provides the students with experience in modeling the theory and applications using a commonly used software tool MATLAB®.




Engineering Optics with MATLAB®


Book Description

This invaluable textbook serves two purposes. The first is to introduce some traditional topics such as matrix formalism of geometrical optics, wave propagation and diffraction, and some fundamental background on fourier optics. The second is to present the essentials of acousto-optics and electro-optics, and provide the students with experience in modeling the theory and applications using a commonly used software tool MATLAB®. The book is based on the authors' own in-class lectures as well as researches in the area.




Optics Using MATLAB®


Book Description




Engineering Optics


Book Description

Engineering Optics is a book for students who want to apply their knowledge of optics to engineering problems, as well as for engineering students who want to acquire the basic principles of optics. It covers such important topics as optical signal processing, holography, tomography, holographic radars, fiber optical communication, electro- and acousto-optic devices, and integrated optics (including optical bistability). Practical examples, such as the video disk, the Fresnel zone plate, and many more, appear throughout the text, together with numerous solved exercises. There is an entirely new section in this updated edition on 3-D imaging.




Contemporary Optical Image Processing with MATLAB


Book Description

This book serves two purposes: first to introduce readers to the concepts of geometrical optics, physical optics and techniques of optical imaging and image processing, and secondly to provide them with experience in modeling the theory and applications using the commonly used software tool MATLAB®. A comprehensively revised version of the authors' earlier book Principles of Applied Optics, Contemporary Optical Image Processing with MATLAB brings out the systems aspect of optics. This includes ray optics, Fourier Optics, Gaussian beam propagation, the split-step beam propagation method, holography and complex spatial filtering, ray theory of holograms, optical scanning holography, acousto-optic image processing, edge enhancement and correlation using photorefractive materials, holographic phase distortion correction, to name a few. MATLAB examples are given throughout the text. MATLAB is emphasized since it is now a widely accepted software tool very routinely used in signal processing. A sizeable portion of this book is based on the authors' own in-class presentations, as well as research in the area. Instructive problems and MATLAB assignments are included at the end of each Chapter to enhance even further the value of this book to its readers. MATLAB is a registered trademark of The MathWorks, Inc.




Optics Using MATLAB


Book Description

Provides a functional overview of the development of MATLAB code that can be used to enhance and increase one's understanding of optics though the use of visualization tools. The book ties a variety of optical topics to MATLAB programming activities and can act as a supplement to other textbooks or can stand alone.




Modern Information Optics with MATLAB


Book Description

An easy-to-understand course book, based on the authentic lectures and detailed research, conducted by the authors themselves, on information optics, holography and MATLAB. This book is the first to highlight the incoherent optical system, provide up-to-date, novel digital holography techniques, and demonstrate MATLAB codes to accomplish tasks such as optical image processing and pattern recognition. This title is a comprehensive introduction to the basics of Fourier optics as well as optical image processing and digital holography. A step-by-step guide which details the vast majority of the derivations, without omitting essential steps, to facilitate a clear mathematical understanding. This book also features exercises at the end of each chapter, providing hands-on experience and consolidating understanding. An ideal companion for graduates and researchers involved in engineering and applied physics, as well as interested in the growing field of information optics.




Optics


Book Description

This new edition is intended for a one semester course in optics for juniors and seniors in science and engineering. It uses scripts from Maple, MathCad, Mathematica, and MATLAB to provide a simulated laboratory where students can learn by exploration and discovery instead of passive absorption. The text covers all the standard topics of a traditional optics course. It contains step by step derivations of all basic formulas in geometrical, wave and Fourier optics. The threefold arrangement of text, applications, and files makes the book suitable for "self-learning" by scientists or engineers who would like to refresh their knowledge of optics.




Optics for Engineers


Book Description

The field of optics has become central to major developments in medical imaging, remote sensing, communication, micro- and nanofabrication, and consumer technology, among other areas. Applications of optics are now found in products such as laser printers, bar-code scanners, and even mobile phones. There is a growing need for engineers to understand the principles of optics in order to develop new instruments and improve existing optical instrumentation. Based on a graduate course taught at Northeastern University, Optics for Engineers provides a rigorous, practical introduction to the field of optics. Drawing on his experience in industry, the author presents the fundamentals of optics related to the problems encountered by engineers and researchers in designing and analyzing optical systems. Beginning with a history of optics, the book introduces Maxwell’s equations, the wave equation, and the eikonal equation, which form the mathematical basis of the field of optics. It then leads readers through a discussion of geometric optics that is essential to most optics projects. The book also lays out the fundamentals of physical optics—polarization, interference, and diffraction—in sufficient depth to enable readers to solve many realistic problems. It continues the discussion of diffraction with some closed-form expressions for the important case of Gaussian beams. A chapter on coherence guides readers in understanding the applicability of the results in previous chapters and sets the stage for an exploration of Fourier optics. Addressing the importance of the measurement and quantification of light in determining the performance limits of optical systems, the book then covers radiometry, photometry, and optical detection. It also introduces nonlinear optics. This comprehensive reference includes downloadable MATLAB® code as well as numerous problems, examples, and illustrations. An introductory text for graduate and advanced undergraduate students, it is also a useful resource for researchers and engineers developing optical systems.