Engineering Response to Climate Change, Second Edition


Book Description

A clear, concise discussion of today’s hottest topics in climate change, including adapting to climate change and geo-engineering to mitigate the effects of change, Engineering Response to Climate Change, Second Edition takes on the tough questions of what to do and offers real solutions to the practical problems caused by radical changes in the Earth’s climate. From energy consumption and carbon dioxide emissions reduction, to climate-altering technologies, this new edition explores the latest concerns such as acidification of the ocean, energy efficiency, transportation, space solar power, and future and emerging possibilities. The editors set the stage by discussing the separate issues of the emissions of radiatively important atmospheric constituents, energy demand, energy supply, agriculture, water resources, coastal hazards, adaption strategies, and geo-engineering. They explain the difference between the natural and human drivers of climate change and describe how humans have influenced the global climate during past decades. Each chapter concludes with discussion questions, calculations, and possible research topics. See What’s in the Second Edition: New conceptual tools and research necessary for problems associated with fossil fuels Cutting-edge topics such as adaption and geo-engineering The latest concerns such as acidification of the ocean, energy efficiency, transportation, and space solar power Solutions to problems caused by changes in the Earth’s climate So much has changed in the 15 years since the publication of the first edition, that this is, in effect, a completely new book. However, the general theme is the same: the climate energy problem has become largely an engineering problem. With this in mind, the book explores what engineers can do to prevent, mitigate, or adapt to climate change.




Engineering Response to Global Climate Change


Book Description

This book goes beyond the analysis offered by typical works on this subject to propose real solutions to problems caused by changes in the earth's climate. From new ways to cut energy consumption and reduce carbon dioxide emissions to discussions of the possibilities of sea walls and climate-altering technologies, Engineering Response to Global Climate Change presents new conceptual tools and suggests research necessary for correcting and alleviating problems caused by global warming. Engineers are just now being asked to consider the problems of climate change and the possible technological responses. This complete reference covers the whole range of potential impacts of climate change and their engineering solutions. Of special interest is the chapter on geoengineering, which suggests how engineers may someday be able to intervene in planetary processes to reduce the effects of global warming. Edited by a regional director of the National Institute for Global Environmental Change and offering the collective expertise of a team of expert authors, each renowned in his or her field, this book offers thorough coverage of this important topic from an engineering and technology perspective.




Engineering Response to Climate Change, Second Edition, 2nd Edition


Book Description

A clear, concise discussion of today's hottest topics in climate change, including adapting to climate change and geo-engineering to mitigate the effects of change, Engineering Response to Climate Change, Second Edition takes on the tough questions of what to do and offers real solutions to the practical problems caused by radical changes in the Earth's climate. From energy consumption and carbon dioxide emissions reduction, to climate-altering technologies, this new edition explores the latest concerns such as acidification of the ocean, energy efficiency, transportation, space solar power, and future and emerging possibilities. The editors set the stage by discussing the separate issues of the emissions of radiatively important atmospheric constituents, energy demand, energy supply, agriculture, water resources, coastal hazards, adaption strategies, and geo-engineering. They explain the difference between the natural and human drivers of climate change and describe how humans have influenced the global climate during past decades. Each chapter concludes with discussion questions, calculations, and possible research topics. See What's in the Second Edition: New conceptual tools and research necessary for problems associated with fossil fuels Cutting-edge topics such as adaption and geo-engineering The latest concerns such as acidification of the ocean, energy efficiency, transportation, and space solar power Solutions to problems caused by changes in the Earth's climate So much has changed in the 15 years since the publication of the first edition, that this is, in effect, a completely new book. However, the general theme is the same: the climate energy problem has become largely an engineering problem. With this in mind, the book explores what engineers can do to prevent, mitigate, or adapt to climate change.




A Case for Climate Engineering


Book Description

A leading scientist argues that we must consider deploying climate engineering technology to slow the pace of global warming. Climate engineering—which could slow the pace of global warming by injecting reflective particles into the upper atmosphere—has emerged in recent years as an extremely controversial technology. And for good reason: it carries unknown risks and it may undermine commitments to conserving energy. Some critics also view it as an immoral human breach of the natural world. The latter objection, David Keith argues in A Scientist's Case for Climate Engineering, is groundless; we have been using technology to alter our environment for years. But he agrees that there are large issues at stake. A leading scientist long concerned about climate change, Keith offers no naïve proposal for an easy fix to what is perhaps the most challenging question of our time; climate engineering is no silver bullet. But he argues that after decades during which very little progress has been made in reducing carbon emissions we must put this technology on the table and consider it responsibly. That doesn't mean we will deploy it, and it doesn't mean that we can abandon efforts to reduce greenhouse gas emissions. But we must understand fully what research needs to be done and how the technology might be designed and used. This book provides a clear and accessible overview of what the costs and risks might be, and how climate engineering might fit into a larger program for managing climate change.




Can Science Fix Climate Change?


Book Description

Climate change seems to be an insurmountable problem. Political solutions have so far had little impact. Some scientists are now advocating the so-called 'Plan B', a more direct way of reducing the rate of future warming by reflecting more sunlight back to space, creating a thermostat in the sky. In this book, Mike Hulme argues against this kind of hubristic techno-fix. Drawing upon a distinguished career studying the science, politics and ethics of climate change, he shows why using science to fix the global climate is undesirable, ungovernable and unattainable. Science and technology should instead serve the more pragmatic goals of increasing societal resilience to weather risks, improving regional air quality and driving forward an energy technology transition. Seeking to reset the planet’s thermostat is not the answer.




Climate Engineering


Book Description

GAO-11-71. Reports of rising global temperatures have raised questions about responses to climate change, including efforts to (1) reduce carbon dioxide (CO2) emissions, (2) adapt to climate change, and (3) design and develop climate engineering technologies for deliberate, large-scale intervention in Earth's climate. Reporting earlier that the nation lacks a coordinated climate-change strategy that includes climate engineering, GAO now assesses climate engineering technologies, focusing on their technical status, future directions for research on them, and potential responses. To perform this technology assessment, GAO reviewed the peer-reviewed scientific literature and government reports, consulted experts with a wide variety of backgrounds and viewpoints, and surveyed 1,006 adults across the United States. Experts convened with the assistance of the National Academy of Sciences advised GAO, and several reviewed a draft of this report. GAO incorporated their technical and other comments in the final report as appropriate. Climate engineering technologies do not now offer a viable response to global climate change. Experts advocating research to develop and evaluate the technologies believe that research on these technologies is urgently needed or would provide an insurance policy against worst case climate scenarios--but caution that the misuse of research could bring new risks. Government reports and the literature suggest that research progress will require not only technology studies but also efforts to improve climate models and data. The technologies being proposed have been categorized as carbon dioxide removal (CDR) and solar radiation management (SRM). CDR would reduce the atmospheric concentration of CO2, allowing more heat to escape and thus cooling the Earth. For example, proposed CDR technologies include enhancing the uptake of CO2 in oceans and forests and capturing CO2 from air chemically for storage underground. SRM technologies would place reflective material in space or in Earth's atmosphere to scatter or reflect sunlight (for example, by injecting sulfate aerosols into the stratosphere to scatter incoming solar radiation or brightening clouds) or would increase the planet's reflectivity (for example, by painting roofs and pavements in light colors). GAO found these technologies currently immature, many with potentially negative consequences. Some studies say, for example, that stratospheric aerosols might greatly reduce summer precipitation in places such as India and northern China. Many experts advocated research because of its potential benefits but also recognized its risks. For example, a country might unilaterally deploy a technology with a transboundary effect. Research advocates emphasized the need for risk management, envisioning a federal research effort that would (1) focus internationally on transparency and cooperation, given transboundary effects; (2) enable the public and national leaders to consider issues before they become crises; and (3) anticipate opportunities and risks. A small number of those we consulted opposed research; they anticipated major technology risks or limited future climate change. Based on GAO's survey, a majority of U.S. adults are not familiar with climate engineering. When given information on the technologies, they tend to be open to research but concerned about safety.~




Engineering Strategies for Global Climate Change


Book Description

Civil and environmental engineers will play a key role in responding to many of the projected impacts of global climate change, including impacts to water supply from drought, changing storm patterns and severity, and the potential for increased flooding due to sea level rise and rainfall patterns. As leaders responsible for the public's physical well-being in terms of the performance of infrastructure, civil engineers need to consider and debate these issues and prepare for the future now.The American Society of Civil Engineers has published a 73-page special issue of Leadership and Management in Engineering (July 2008) entitled Engineering Strategies for Global Climate Change. In this collection of feature articles, several writers present visions of the future for which the engineering profession needs to further respond and act.Topics include: Power Generation; Building Design; State Climate Change Action Plans; Storms, Flooding and Coastal Dikes; Droughts and the Water Supply; Land Use Implications; And, No-Regrets Technologies.




Global Warming and the Future of the Earth


Book Description

The globally averaged surface temperature of the Earth has increased during the past century by about 0.7°C. Most of the increase can be attributed to the greenhouse effect, the increase in the atmospheric concentration of carbon dioxide that is emitted when fossil fuels are burned to produce energy.The book begins with the important distinction between weather and climate, followed by data showing how carbon dioxide has increased and the incontrovertible evidence that it is caused by burning fossil fuels (i.e., coal, oil, and natural gas). I also address the inevitable skepticism that global warming arouses and offer a number of responses to the global warming skeptics. After dealing with the skeptics, I analyze both the current and future effects of global warming. These future effects are based on scenarios or “storylines” put forth by the International Institute for Applied Systems Analysis. In closing, I address the controversial (and grim) suggestion that we have already passed the “tipping point,” which is the time after which, regardless of our future actions, global warming will cause considerable hardship on human society. I intend this book to be approachable for all concerned citizens, but especially students of the sciences and engineering who will soon be in a position to make a difference in the areas of energy and the environment. I have tried to frame the debate in terms of what the engineering community must do to help combat global warming. We have no choice but to think in terms of global environmental constraints as we design new power plants, factories, automobiles, buildings, and homes. The best thing for scientists to do is to present what we know, clearly separating what is known from what is suspected, in a non-apocalyptic manner. If matters are clearly and passionately presented to the public, we must be prepared to accept the will of the people. This presents the scientific community with an enormous responsibility, perhaps unlike any we have had in the past. Contents: Weather and Climate (and a Little History) / Are the Concentrations of Greenhouse Gases in the Atmosphere Increasing? / The Greenhouse Effect and the Evidence of Global Warming / The Skeptics: Are Their Doubts Scientifically Valid / Impacts: The ""So What"" Question / The Bottom Line




Autonomy on Land and Sea and in the Air and Space


Book Description

"Autonomy is multidisciplinary, multicultural, and global in its development and applications. Autonomous vehicles rely on communications, artificial intelligence, sensors, virtual and enhanced reality, big data, security, and many other technologies. Each year the annual meeting of the National Academy of Engineering highlights an engineering theme that is quickly developing in the world. The theme of the 2017 meeting was autonomy on land and sea and in the air and space. This publication summarizes the presentations and discussions from the meeting"--Publisher's description.




Why Govern?


Book Description

A timely and authoritative assessment of the crisis in global cooperation and prospects for its reform and transformation.