Engineering Self-Organising Systems


Book Description

This book constitutes the refereed post-proceedings of the Third International Workshop on Engineering Self-Organising Applications, ESOA 2005, held in July 2005 as an associated event of AAMAS 2005. The 12 revised full papers and 6 revised short papers presented are organized in topical sections on novel self-organising mechanisms, methodologies, models and tools for self-organising applications, and specific applications of self-organising mechanisms.




Engineering Self-Organising Systems


Book Description

This book constitutes the thoroughly refereed post-proceedings of the 4th International Workshop on Engineering Self-Organising Applications, ESOA 2006, held in Hakodate, Japan in May 2006. This was an associated event of AAMAS 2006, the 5th International Joint Conference on Autonomous Agents and Multi-Agent Systems. The seven full papers presented together with six invited papers were carefully selected for inclusion in the book.




Engineering Self-Organising Systems


Book Description

As information handling systems get more and more complex, it becomes increasingly difficult to manage them using traditional approaches based on centralized and pre-defined control mechanisms. Over recent years, there has been a significant increase in taking inspiration from biology, the physical world, chemistry, and social systems to more efficiently manage such systems - generally based on the concept of self-organisation; this gave rise to self-organising applications. This book constitutes a reference and starting point for establishing the field of engineering self-organising applications. It comprises revised and extended papers presented at the Engineering Self-Organising Applications Workshop, ESOA 2003, held at AAMAS 2003 in Melbourne, Australia, in July 2003 and selected invited papers from leading researchers in self-organisation. The book is organized in parts on applications, natural metaphors (multi-cells and genetic algorithms, stigmergy, and atoms and evolution), artificial interaction mechanisms, middleware, and methods and tools.




Adaptive, Dynamic, and Resilient Systems


Book Description

As the complexity of today’s networked computer systems grows, they become increasingly difficult to understand, predict, and control. Addressing these challenges requires new approaches to building these systems. Adaptive, Dynamic, and Resilient Systems supplies readers with various perspectives of the critical infrastructure that systems of networked computers rely on. It introduces the key issues, describes their interrelationships, and presents new research in support of these areas. The book presents the insights of a different group of international experts in each chapter. Reporting on recent developments in adaptive systems, it begins with a survey of application fields. It explains the requirements of such fields in terms of adaptation and resilience. It also provides some abstract relationship graphs that illustrate the key attributes of distributed systems to supply you with a better understanding of these factors and their dependencies. The text examines resilient adaptive systems from the perspectives of mobile, infrastructure, and enterprise systems and protecting critical infrastructure. It details various approaches for building adaptive, dynamic, and resilient systems—including agile, grid, and autonomic computing; multi-agent-based and biologically inspired approaches; and self-organizing systems. The book includes many stories of successful applications that illustrate a diversified range of cutting-edge approaches. It concludes by covering related topics and techniques that can help to boost adaptation and resilience in your systems.




Self-organising Software


Book Description

Self-organisation, self-regulation, self-repair and self-maintenance are promising conceptual approaches for dealing with complex distributed interactive software and information-handling systems. Self-organising applications dynamically change their functionality and structure without direct user intervention, responding to changes in requirements and the environment. This is the first book to offer an integrated view of self-organisation technologies applied to distributed systems, particularly focusing on multiagent systems. The editors developed this integrated book with three aims: to explain self-organisation concepts and principles, using clear definitions and a strong theoretical background; to examine how self-organising behaviour can be modelled, analysed and systematically engineered into agent behaviour; and to assess the types of problems that can be solved using self-organising multiagent systems. The book comprises chapters covering all three dimensions, synthesising up-to-date research work and the latest technologies and applications. The book offers dedicated chapters on concepts such as self-organisation, emergence in natural systems, software agents, stigmergy, gossip, cooperation and immune systems. The book then explains how to engineer artificial self-organising software, in particular it examines methodologies and middleware infrastructures. Finally, the book presents diverse applications of self-organising software, such as constraint satisfaction, trust management, image recognition and networking. The book will be of interest to researchers working on emergent phenomena and adaptive systems. It will also be suitable for use as a graduate textbook, with chapter summaries and exercises, and an accompanying website that includes teaching slides, exercise solutions and research project outlines. Self-organisation, self-regulation, self-repair and self-maintenance are promising conceptual approaches for dealing with complex distributed interactive software and information-handling systems. Self-organising applications dynamically change their functionality and structure without direct user intervention, responding to changes in requirements and the environment. This is the first book to offer an integrated view of self-organisation technologies applied to distributed systems, particularly focusing on multiagent systems. The editors developed this integrated book with three aims: to explain self-organisation concepts and principles, using clear definitions and a strong theoretical background; to examine how self-organising behaviour can be modelled, analysed and systematically engineered into agent behaviour; and to assess the types of problems that can be solved using self-organising multiagent systems. The book comprises chapters covering all three dimensions, synthesising up-to-date research work and the latest technologies and applications. The book offers dedicated chapters on concepts such as self-organisation, emergence in natural systems, software agents, stigmergy, gossip, cooperation and immune systems. The book then explains how to engineer artificial self-organising software, in particular it examines methodologies and middleware infrastructures. Finally, the book presents diverse applications of self-organising software, such as constraint satisfaction, trust management, image recognition and networking. The book will be of interest to researchers working on emergent phenomena and adaptive systems. It will also be suitable for use as a graduate textbook, with chapter summaries and exercises, and an accompanying website that includes teaching slides, exercise solutions and research project outlines.




Multiagent System Technologies


Book Description

This book constitutes the refereed proceedings of the 11th German Conference on Multiagent System Technologies, MATES 2013, held in Koblenz, Germany, in September 2013. The 29 revised full papers and 3 keynote talks presented were carefully reviewed and selected from various submissions. The papers cover a broad area of topics of interest ranging from issues of agent-based coordination to simulation to negotiation.




Design and Control of Self-organizing Systems


Book Description

Complex systems are usually difficult to design and control. There are several particular methods for coping with complexity, but there is no general approach to build complex systems. In this book I propose a methodology to aid engineers in the design and control of complex systems. This is based on the description of systems as self-organizing. Starting from the agent metaphor, the methodology proposes a conceptual framework and a series of steps to follow to find proper mechanisms that will promote elements to find solutions by actively interacting among themselves.




Principles of Distributed Systems


Book Description

This book constitutes the refereed proceedings of the 11th International Conference on Principles of Distributed Systems, OPODIS 2007, held in Guadeloupe, French West Indies, in December 2007. The 32 revised full papers presented were carefully reviewed and selected from 106 submissions. The papers address all current issues in theory, specification, design and implementation of distributed and embedded systems. A broad range of topics are addressed.




Distributed-Order Dynamic Systems


Book Description

Distributed-order differential equations, a generalization of fractional calculus, are of increasing importance in many fields of science and engineering from the behaviour of complex dielectric media to the modelling of nonlinear systems. This Brief will broaden the toolbox available to researchers interested in modeling, analysis, control and filtering. It contains contextual material outlining the progression from integer-order, through fractional-order to distributed-order systems. Stability issues are addressed with graphical and numerical results highlighting the fundamental differences between constant-, integer-, and distributed-order treatments. The power of the distributed-order model is demonstrated with work on the stability of noncommensurate-order linear time-invariant systems. Generic applications of the distributed-order operator follow: signal processing and viscoelastic damping of a mass–spring set up. A new general approach to discretization of distributed-order derivatives and integrals is described. The Brief is rounded out with a consideration of likely future research and applications and with a number of MATLAB® codes to reduce repetitive coding tasks and encourage new workers in distributed-order systems.




Self-organizing Coalitions for Managing Complexity


Book Description

This book provides an interdisciplinary approach to complexity, combining ideas from areas like complex networks, cellular automata, multi-agent systems, self-organization and game theory. The first part of the book provides an extensive introduction to these areas, while the second explores a range of research scenarios. Lastly, the book presents CellNet, a software framework that offers a hands-on approach to the scenarios described throughout the book. In light of the introductory chapters, the research chapters, and the CellNet simulating framework, this book can be used to teach undergraduate and master’s students in disciplines like artificial intelligence, computer science, applied mathematics, economics and engineering. Moreover, the book will be particularly interesting for Ph.D. and postdoctoral researchers seeking a general perspective on how to design and create their own models.