Biomethanization of the Organic Fraction of Municipal Solid Wastes


Book Description

Biomethanization of the Organic Fraction of Municipal Solid Wastes is a comprehensive introduction to both the fundamentals and the more practical aspects of the anaerobic digestion of organic solid wastes, particularly those derived from households, that is, the organic fraction of municipal solid wastes (OFMSW). It can be used as a textbook for specialized courses and also as a guide for practitioners. In the first part, the book covers the relevant aspects of anaerobic digestion (AD) of organic wastes. The fundamentals and kinetic aspects of AD are reviewed with particular emphasis on the aspects related to solid wastes. This introduction is necessary to have a comprehensive view of the AD process and to understand the practical principles as well as the origin of possible problems arising from the management of the process. Chapter 2 emphasizes the role of kinetics in designing the reactor, paying special attention to existing models, particularly the dynamic ones. Through this introduction, it is intended to facilitate the technology transfer from laboratory or pilot plant experiences to full-scale process, in order to implement improvements in current digesters. Laboratory methods are described for the analysis and optimization of reactor performance, such as methanogenic activity tests or experimental evaluation of the biodegradation kinetics of solid organic waste. The different reaction patterns applied to industrial reactors are outlined. Industrial reactors are classified in accordance with the system they use, pointing out advantages and limitations. Co-digestion, enabling the co-treatment of organic wastes of different origin in a more economically feasible way, is described in detail. Examples of co-digestion are given, with OFMSW as a base-substrate. Finally, full-scale co-digestion plants are discussed. Various types (mechanical, biological, physico-chemical) of pre-treatment to increase the biodegradability, and thus the yields of the process, are reviewed in detail. The use of the fermentation products of anaerobic digesters for biological nutrient removal processes in wastewater treatment plants is described. This constitutes an example of integrated waste management, a field in which both economic and technical advances can be achieved. Balances are given to justify the approach, and a full-scale case study is presented. The important topic of economics and the ecological advantages of the process are emphasized. The use of compost, the integration with composting technology, and advantages over other technologies are detailed in the framework of an environmental impact assessment of biowaste treatment. Finally, the anaerobic digestion of MSW in landfills is reviewed in detail, with emphasis on landfill process enhancement and strategies for its application.




Microwave-Mediated Biofuel Production


Book Description

This book focuses on chemical syntheses and processes for biofuel production mediated by microwave energy. This is the first contribution in this area serving as a resource and guidance manual for understanding the principles, mechanisms, design, and applications of microwaves in biofuel process chemistry. Green chemistry of microwave-mediated biofuel reactions and thermodynamic potentials for the process biochemistry are the focus of this book. Microwave generation, wave propagation, process design, development and configurations, and biofuel applications are discussed in detail.







Advanced Organic Waste Management


Book Description

Advanced Organic Waste Management: Sustainable Practices and Approaches provides an integrated holistic approach to the challenges associated with organic waste management, particularly related to sustainability, lifecycle assessment, emerging regulations, and novel approaches for resource and energy recovery. In addition to traditional techniques, such as anaerobic digestion, composting, innovative and emerging techniques of waste recycling like hydrothermal carbonization and vermicomposting are included. The book combines the fundamentals and practices of sustainable organic waste management with successful case studies from developed and developing countries, highlighting practical applications and challenges. Sections cover global organic waste generation, encompassing sources and types, composition and characteristics, focus on technical aspects related to various resource recovery techniques like composting and vermicomposting, cover various waste-to-energy technologies, illustrate various environmental management tools for organic waste, present innovative organic waste management practices and strategies complemented by detailed case studies, introduce the circular bioeconomy approach, and more. - Presents the fundamentals and practices of sustainable, organic waste management, with emerging regulations and up-to-date analysis on environmental management tools such as lifecycle assessment in a comprehensive manner - Offers the latest information on novel concepts and strategies for organic waste management, particularly zero waste and the circular bioeconomy - Includes the latest research findings and future perspectives of innovative and emerging techniques of waste recycling, such as hydrothermal carbonization and vermicomposting




Production of Biofuels and Chemicals from Sustainable Recycling of Organic Solid Waste


Book Description

This book covers sustainable recycling processes (e.g. physical, biological, chemical, and thermo-chemical) of multiple organic solid wastes, provides methods for material recycle of wastes into value-added products including fuels and commodity chemicals that are able to be directly applied to promote manufacturing processes. Aimed at improving the awareness of effective conversion protocols and for developing innovative biomass conversion processes, this text was conceived as a collection of studies on state-of-art techniques and know-how for production of biofuels and chemicals from sustainable recycling of organic solid wastes. Topics in the text are discussed in terms of addressing recent advances, assessing and highlighting promising new methods or new technological strategies and direct conversion of organic solid wastes to process feeds. Highly-recognized authorities, experts and professionals have contributed individual chapters in selected areas to cover the overall topic in a comprehensive manner.




Methods for Enhancing Biogas Production


Book Description

The concern about using organic waste as a renewable energy source is a critical worldwide issue. In this area, anaerobic digestion (AD) seems to be a promising solution because of the significant reduction of waste quantity and generation of valuable products such as biogas, regarded as being a good energy carrier and digestate with high nutritional potential for agriculture. The current trends in AD focus on improving the efficiency of the process to make this a cost-effective treatment. Depending on the source (agricultural, municipal, or industrial), organic waste varies considering both its composition and structure, and thus the bioaccessibility and biodegradability. Accordingly, materials rich in carbohydrates, proteins, and fats require different operational conditions to overcome technological problems and minimize the risk of disruption or failure of the anaerobic systems. Different strategies can be used to enhance biogas production, including waste pretreatment (physical, chemical, physico-chemical, biological, and combined), two-stage AD (temperaturephased AD and two-phase AD), anaerobic co-digestion (two-substrate and multi-substrate systems), and bioaugmentation (with natural strains or specialized consortia of microorganisms and genetically modified microorganisms or their consortia). Some of them enhance its accessibility and digestibility, while others improve nutritional balance, metabolic properties, and operational factors, facilitating synergistic effect of microorganisms. This book covers the current developments in the area of enhancing biogas production.




Proceedings of the First International Conference on Recent Advances in Bioenergy Research


Book Description

This contributed volume aims to provide latest updates in the area of bioenergy including biodiesel, bioethanol, biomethanation, biomass gasification, and biomass cook-stove. The proceedings of ICRABR 2015 include cutting edge research vital to R&D organizations, academics, and the industry to promote and document the recent developments in the area of bioenergy for all types of stakeholders. The volume highlights the needs of biofuels and their market, the barriers and challenges faced by biofuels and bioenergy and future strategies required to foster new ideas for research, collaboration and commercialization of bioenergy. The major themes of this contributed volume are: Biomass and Energy Management ;Thermochemical Conversion Processes; Biochemical Conversion Processes; Catalytic Conversion Processes; Electrochemical Processes; Waste Treatment to Harvest Energy; and Integrated Processes. The contents of the volume will appeal to students, researchers, professionals, and policymakers in the field of bifuels and bioenergy.




Microbiology of Solid Waste


Book Description

Interest in solid waste disposal has been growing since the early 1960s, when researchers emphasized the potential for solid waste to harbor pathogenic microorganisms. Since then, society has become more interested in the environmental impacts of solid waste treatment and disposal, and how biological processes are used to minimize these impacts. This new text provides a basic understanding of the unique microbial ecosystems associated with the decomposition of municipal solid waste (MSW). It addresses the challenges of sampling and assaying microbial activities in MSW and describes preferred methods. The decomposition of MSW under anaerobic conditions in landfills and digestors is described, as well as under aerobioconditions during composting. The Microbiology of Solid Wastes discusses the need to consider MSW as an integrated system of collection, recycling, treatment, and disposal. A better understanding of solid waste microbiology will contribute to safe and economical solid waste management. Microbiologists, environmental engineers, and solid waste managers will all find this a useful reference.




Anaerobic Digestion Model No.1 (ADM1)


Book Description

The IWA Task Group for Mathematical Modelling of Anaerobic Digestion Processes was created with the aim to produce a generic model and common platform for dynamic simulations of a variety of anaerobic processes. This book presents the outcome of this undertaking and is the result of four years collaborative work by a number of international experts from various fields of anaerobic process technology. The purpose of this approach is to provide a unified basis for anaerobic digestion modelling. It is hoped this will promote increased application of modelling and simulation as a tool for research, design, operation and optimisation of anaerobic processes worldwide. This model was developed on the basis of the extensive but often disparate work in modelling and simulation of anaerobic digestion systems over the last twenty years. In developing ADM1, the Task Group have tried to establish common nomenclature, units and model structure, consistent with existing anaerobic modelling literature and the popular activated sludge models (See Activated Sludge Models ASM1, ASM2, ASM2d and ASM3, IWA Publishing, 2000, ISBN: 1900222248). As such, it is intended to promote widespread application of simulation from domestic (wastewater and sludge) treatment systems to specialised industrial applications. Outputs from the model include common process variables such gas flow and composition, pH, separate organic acids, and ammonium. The structure has been devised to encourage specific extensions or modifications where required, but still maintain a common platform. During development the model has been successfully tested on a range of systems from full-scale waste sludge digestion to laboratory-scale thermophilic high-rate UASB reactors. The model structure is presented in a readily applicable matrix format for implementation in many available differential equation solvers. It is expected that the model will be available as part of commercial wastewater simulation packages. ADM1 will be a valuable information source for practising engineers working in water treatment (both domestic and industrial) as well as academic researchers and students in Environmental Engineering and Science, Civil and Sanitary Engineering, Biotechnology, and Chemical and Process Engineering departments. Contents Introduction Nomenclature, State Variables and Expressions Biochemical Processes Physicochemical Processes Model Implementation in a Single Stage CSTR Suggested Biochemical Parameter Values, Sensitivity and Estimation Conclusions References Appendix A: Review of Parameters Appendix B: Supplementary Matrix Information Appendix C: Integration with the ASM Appendix D: Estimating Stoichiometric Coefficients for Fermentation Scientific & Technical Report No.13




Solid Waste Management in Rural Areas


Book Description

The book points out that rural regions need proper attention at the global level concerning solid waste management sector where bad practices and public health threats could be avoided through traditional and integrated waste management routes. Solid waste management in rural areas is a key issue in developing and transitioning countries due to the lack of proper waste management facilities and services. The book further examines, on the one hand, the main challenges in the development of reliable waste management practices across rural regions and, on the other hand, the concrete solutions and the new opportunities across the world in dealing with municipal and agricultural wastes. The book provides useful information for academics, various professionals, the members of civil society, and national and local authorities.