Building Thinking Classrooms in Mathematics, Grades K-12


Book Description

A thinking student is an engaged student Teachers often find it difficult to implement lessons that help students go beyond rote memorization and repetitive calculations. In fact, institutional norms and habits that permeate all classrooms can actually be enabling "non-thinking" student behavior. Sparked by observing teachers struggle to implement rich mathematics tasks to engage students in deep thinking, Peter Liljedahl has translated his 15 years of research into this practical guide on how to move toward a thinking classroom. Building Thinking Classrooms in Mathematics, Grades K–12 helps teachers implement 14 optimal practices for thinking that create an ideal setting for deep mathematics learning to occur. This guide Provides the what, why, and how of each practice and answers teachers’ most frequently asked questions Includes firsthand accounts of how these practices foster thinking through teacher and student interviews and student work samples Offers a plethora of macro moves, micro moves, and rich tasks to get started Organizes the 14 practices into four toolkits that can be implemented in order and built on throughout the year When combined, these unique research-based practices create the optimal conditions for learner-centered, student-owned deep mathematical thinking and learning, and have the power to transform mathematics classrooms like never before.




Enhancing University Mathematics


Book Description

The book deals with teaching mathematics, a core activity of the contemporary university. It is suitable for the library of every university and mathematician. It features a broad range of topics (technology, pedagogy, philosophy, course content) of interest and value to all who teach university mathematics. This is one of the few books dealing with this essential subject.




Transformational Change Efforts: Student Engagement in Mathematics through an Institutional Network for Active Learning


Book Description

The purpose of this handbook is to help launch institutional transformations in mathematics departments to improve student success. We report findings from the Student Engagement in Mathematics through an Institutional Network for Active Learning (SEMINAL) study. SEMINAL's purpose is to help change agents, those looking to (or currently attempting to) enact change within mathematics departments and beyond—trying to reform the instruction of their lower division mathematics courses in order to promote high achievement for all students. SEMINAL specifically studies the change mechanisms that allow postsecondary institutions to incorporate and sustain active learning in Precalculus to Calculus 2 learning environments. Out of the approximately 2.5 million students enrolled in collegiate mathematics courses each year, over 90% are enrolled in Precalculus to Calculus 2 courses. Forty-four percent of mathematics departments think active learning mathematics strategies are important for Precalculus to Calculus 2 courses, but only 15 percnt state that they are very successful at implementing them. Therefore, insights into the following research question will help with institutional transformations: What conditions, strategies, interventions and actions at the departmental and classroom levels contribute to the initiation, implementation, and institutional sustainability of active learning in the undergraduate calculus sequence (Precalculus to Calculus 2) across varied institutions?




Mathematical Creativity and Mathematical Giftedness


Book Description

This book discusses the relationships between mathematical creativity and mathematical giftedness. It gathers the results of a literature review comprising all papers addressing mathematical creativity and giftedness presented at the International Congress on Mathematical Education (ICME) conferences since 2000. How can mathematical creativity contribute to children’s balanced development? What are the characteristics of mathematical giftedness in early ages? What about these characteristics at university level? What teaching strategies can enhance creative learning? How can young children’s mathematical promise be preserved and cultivated, preparing them for a variety of professions? These are some of the questions addressed by this book. The book offers, among others: analyses of substantial learning environments that promote creativity in mathematics lessons; discussions of a variety of strategies for posing and solving problems; investigations of students’ progress throughout their schooling; and examinations of technological tools and virtual resources meant to enhance learning with understanding. Multiple perspectives in the interdisciplinary fields of mathematical creativity and giftedness are developed to offer a springboard for further research. The theoretical and empirical studies included in the book offer a valuable resource for researchers, as well as for teachers of gifted students in specialized or inclusive settings, at various levels of education.




Research and Development in University Mathematics Education


Book Description

In the last thirty years or so, the need to address the challenges of teaching and learning mathematics at university level has become increasingly appreciated by university mathematics teachers, and beyond, by educational institutions around the world. Indeed, mathematics is both a condition and an obstacle to success for students in many educational programmes vital to the 21st century knowledge society, for example in pure and applied mathematics, engineering, natural sciences, technology, economics, finance, management and so on. This breadth of impact of mathematics implies the urgency of developing research in university mathematics education, and of sharing results of this research widely. This book provides a bespoke opportunity for an international audience of researchers in didactics of mathematics, mathematicians and any teacher or researcher with an interest in this area to be informed about state-of-the-art developments and to heed future research agendas. This book emerged from the activities of the research project INDRUM (acronym for International Network for Didactic Research in University Mathematics), which aims to contribute to the development of research in didactics of mathematics at all levels of tertiary education, with a particular concern for the development of early-career researchers in the field and for dialogue with university mathematicians. The aim of the book is to provide a deep synthesis of the research field as it appears through two INDRUM conferences organised in 2016 and 2018. It is an original contribution which highlights key research perspectives, addresses seminal theoretical and methodological issues and reports substantial results concerning the teaching and learning of mathematics at university level, including the teaching and learning of specific topics in advanced mathematics across a wide range of university programmes.




Language Connections


Book Description

Intended for use by college and university educators, this book contains theoretical ideas and practical activities designed to enhance and promote writing across the curriculum programs. Topics discussed in the 12 major chapters are (1) conceptual frameworks of the cross writing program; (2) journal writing across the curriculum; (3) writing and problem solving; (4) assigning and evaluating transactional writing; (5) audience and purpose in writing; (6) the poetic function of language; (7) using narration to shape experience; (8) readers and expressive language; (9) what every educator should know about reading research; (10) reconciling readers and texts; (11) peer critiques, teacher student conferences, and essay evaluation as a means of responding to student writing; and (12) the role of the writing laboratory. A concluding chapter provides a select bibliography on language and learning across the curriculum. (FL)




Mathematical Mindsets


Book Description

Banish math anxiety and give students of all ages a clear roadmap to success Mathematical Mindsets provides practical strategies and activities to help teachers and parents show all children, even those who are convinced that they are bad at math, that they can enjoy and succeed in math. Jo Boaler—Stanford researcher, professor of math education, and expert on math learning—has studied why students don't like math and often fail in math classes. She's followed thousands of students through middle and high schools to study how they learn and to find the most effective ways to unleash the math potential in all students. There is a clear gap between what research has shown to work in teaching math and what happens in schools and at home. This book bridges that gap by turning research findings into practical activities and advice. Boaler translates Carol Dweck's concept of 'mindset' into math teaching and parenting strategies, showing how students can go from self-doubt to strong self-confidence, which is so important to math learning. Boaler reveals the steps that must be taken by schools and parents to improve math education for all. Mathematical Mindsets: Explains how the brain processes mathematics learning Reveals how to turn mistakes and struggles into valuable learning experiences Provides examples of rich mathematical activities to replace rote learning Explains ways to give students a positive math mindset Gives examples of how assessment and grading policies need to change to support real understanding Scores of students hate and fear math, so they end up leaving school without an understanding of basic mathematical concepts. Their evasion and departure hinders math-related pathways and STEM career opportunities. Research has shown very clear methods to change this phenomena, but the information has been confined to research journals—until now. Mathematical Mindsets provides a proven, practical roadmap to mathematics success for any student at any age.




Mathematical Proficiency for All Students: Toward a Strategic Research and Development Program in Mathematics Education


Book Description

A clear need exists for substantial improvement in mathematics proficiency in U.S. schools. The RAND Mathematics Study Panel was convened to inform the U.S. Department of Education's Office of Educational Research and Improvement on ways to improve the quality and usability of education research and development (R&D). The panel identified three areas for focused R&D: development of teachers' mathematical knowledge used in teaching; teaching and learning of skills needed for mathematical thinking and problem-solving; and teaching and learning of algebra from kindergarten through the 12th grade.




MYP Mathematics 1


Book Description

Build solid mathematical understanding and develop meaningful conceptual connections. The inquiry-based approach holistically integrates the MYP key concepts, helping you shift to a concept-based approach and cement comprehension of mathematical principles. Fully comprehensive and matched to the Revised MYP, this resource builds student potential at MYP and lays foundations for cross-curricular understanding. Using a unique question cycle to sequentially build skills and comprehension, units introduce factual questions, followed by concept-based questions and conclude with debatable questions. This firm grounding in inquiry-based learning equips learners to actively explore mathematical concepts and relate them to the wider 21st Century world, strengthening comprehension. Progress your learners into IB Diploma - fully comprehensive and matched to the Revised MYP Develop conceptual understanding in the best way for your learners - learn by mathematical unit or by key concept Drive active, critical ex




Whole Class Mathematics Discussions


Book Description

Filled with research-based ideas, practical strategies and tools, this book and the accompanying website supports teachers in facilitating effective whole class discussions to enhance K-8 students' mathematical understanding.