Disciplinary and Trans-Disciplinary Knowledge and Skills for an Uncertain Future: Are Educational Media up to It?


Book Description

This volume collects some of the papers presented at the 16th IARTEM Conference held in Florence in April 2022. It was a ’difficult conference’, held at a time when the pandemic was still present, and therefore an important opportunity to resume a dialogue that seemed to have been interrupted. The richness of the content, which is the result of the reflections of authors from all over the world, allows us to provide a precise scenario of the research state of art in the field of textbooks and digital resources for teaching.




Constitution and Production of Mathematics in the Cyberspace


Book Description

This book brings together various studies that assume phenomenology to analyze how mathematics education is affected by the experience of being in the cyberspace. The authors of the chapters included in this contributed volume work with the theoretical framework developed by authors such as Edmund Husserl, Martin Heidegger and Maurice Merleau-Ponty to investigate how mathematics is produced and comprehended in a new way of being in the world, with digital technologies. The aim of this book is not to explain the tools used and how one works with them in the cyberspace, aiming at better teaching and learning mathematics. Its purpose is to present philosophical investigations that contribute to the understanding of the complexity of the world in which we are being researchers and mathematics teachers. By doing so, Constitution and Production of Mathematics in the Cyberspace – A Phenomenological Approach will help researchers and mathematics teachers understand their role in a world in which the experience of teaching and learning mathematics is being radically changed by new technologies and new ways of being in this world.




Mathematical Modelling Programs in Latin America


Book Description

This book is about the unique, sophisticated, and rigorous study of mathematics in Latin America developed over centuries of cultural exchange between Europe, North, and South America. More specifically, the book explores the tradition of mathematical modelling, introduced a century ago. This modelling was adapted to assist members of distinct communities to draw information about their own realities through the elaboration of representations, which generate mathematical knowledge that deals with creativity and invention. The book provides empirical evidence that a category of mathematical modelling developed in Latin America assesses the horizontal and reciprocal relations between mathematics (school/non-school contexts) and the real world. These relations provide an epistemological and ontological change, where mathematical knowledge of the others is recognized on a horizontal plane. Further, they oblige mathematics teachers and students to understand as a community of knowledge that builds their own mathematical categories of their environment governed by the reciprocal relationships between academic knowledge and functional knowledge. The dimensions of the relationships make up a frame of reference that guides educational change in mathematics. The book presents an inquiry-based approach of three Latin American modelling programs: ethnomodelling, transversality of knowledge, and reasoned decision-making. Each one, with its respective theoretical and methodological foundations related to ethnomathematics and mathematical modelling, socioepistemology, and the attribution of meaning to learning. Undoubtedly, the three mathematical modelling programs, independently, provide educational gains, each with its levels of specificity and loyal to its philosophical, theoretical, and methodological principles. However, the book places them together, organized by axes, to define a corpus of mathematical knowledge that envisions profound educational change through the development of different approaches of mathematical modelling. The authors of the 18 chapters in this book, who represent the diversity of Latin America, are from eight countries: Argentina, Brazil, Chile, Colombia, Costa Rica, Cuba, Ecuador, Honduras, and Mexico. They were invited to share their ideas, perspectives, and discuss investigations that represent a rich sample of three Latin American perspectives on mathematical modelling.




Mathematics Education in Brazil


Book Description

This book presents, for the first time in English, the state of the art of Mathematics Education research in Brazil, a country that has the strongest community in this field in Latin America. Edited by leading researchers in the area, the volume provides the international academic community a summary of the scientific production of the thirteen working groups of the Brazilian Society of Mathematics Education (SBEM), the national scientific society that brings together researchers, teachers, students and other professionals of the area. These working groups meet every three years at the International Seminar of Mathematics Education (SIPEM) and cover the following topics: Mathematics Education in the Early Years and Primary Education (Y1-Y5); Mathematics Education in the Middle School (Y6-Y9); Mathematics Education in the High School (Y10-Y12); Mathematics Education at the University level; History of Mathematics, Culture and Mathematics Education; Digital Technologies and Distance Education; Teacher Education; Assessment and Mathematics Education; Cognitive and Linguistic Processes in Mathematics Education; Mathematical Modeling; Philosophy of Mathematics Education, Teaching Probability and Statistics; and Difference, Inclusion and Mathematics Education. Each chapter of the book presents an overview of the production of a working group and they are all preceded by an introduction by professor Ubiratan D’Ambrosio, one of the pioneers of Mathematics Education in Brazil.







Oral History and Mathematics Education


Book Description

This book presents an innovative method to investigate the history of mathematics education using oral narratives to study different aspects related to the teaching and learning of mathematics. The application of oral history in mathematics education research was first developed as a method in Brazil in the early 2000s as a result of interdisciplinary dialogues between mathematics educators, anthropologists, sociologists, historians, psychologists, artists and philosophers. Since then, this new methodology has attracted the attention of a growing number of researchers. This contributed volume is the first book in English to bring together chapters written by different members of the research group who developed the methodology and to present a comprehensive overview of the theoretical and practical aspects of the use of oral narratives in the study of experiences in mathematics classrooms. Oral History and Mathematics Education will be a useful tool to researchers and educators looking for new methods to study the dynamics of teaching and learning mathematics in the classroom and to develop innovative mathematics teacher education programs. The volume will also be of interest to historians of education since it describes the foundations of both concepts and procedures related to the application of oral history in educational research, always giving examples of studies already conducted and, whenever possible, suggesting possible research exercises.







Ubiratan D'Ambrosio


Book Description




Ethnomathematics


Book Description

In this book, Ubiratan D’Ambrosio presents his most recent thoughts on ethnomathematics—a sub-field of mathematics history and mathematics education for which he is widely recognized to be one of the founding fathers. In a clear, concise format, he outlines the aim of the Program Ethnomathematics, which is to understand mathematical knowing/doing throughout history, within the context of different groups, communities, peoples and nations, focusing on the cycle of mathematical knowledge: its generation, its intellectual and social organization, and its diffusion. While not rejecting the importance of modern academic mathematics, it is viewed as but one among many existing ethnomathematics. Offering concrete examples and ideas for mathematics teachers and researchers, D’Ambrosio makes an eloquent appeal for an entirely new approach to conceptualizing mathematics knowledge and education that embraces diversity and addresses the urgent need to provide youth with the necessary tools to become ethical, creative, critical individuals prepared to participate in the emerging planetary society.




Mathematics and Technology


Book Description

This volume collects most recent work on the role of technology in mathematics education. It offers fresh insight and understanding of the many ways in which technological resources can improve the teaching and learning of mathematics. The first section of the volume focuses on the question how a proposed mathematical task in a technological environment can influence the acquisition of knowledge and what elements are important to retain in the design of mathematical tasks in computing environments. The use of white smart boards, platforms as Moodle, tablets and smartphones have transformed the way we communicate both inside and outside the mathematics classroom. Therefore the second section discussed how to make efficient use of these resources in the classroom and beyond. The third section addresses how technology modifies the way information is transmitted and how mathematical education has to take into account the new ways of learning through connected networks as well as new ways of teaching. The last section is on the training of teachers in the digital era. The editors of this volume have selected papers from the proceedings of the 65th, 66th and 67th CIEAEM conference, and invited the correspondent authors to contribute to this volume by discussing one of the four important topics. The book continues a series of sourcebooks edited by CIEAEM, the Commission Internationale pour l’Étude et l’Amélioration de l’Enseignement des Mathématiques / International Commission for the Study and Improvement of Mathematics Education.