Ensuring Software Reliability


Book Description

Explains how software reliability can be applied to software programs of all sizes, functions and languages, and businesses. This text provides real-life examples from industries such as defence engineering, and finance. It is aimed at software and quality assurance engineers and graduate students.




Software System Reliability and Security


Book Description

To make communication and computation secure against catastrophic failure and malicious interference, it is essential to build secure software systems and methods for their development. This book describes the ideas on how to meet these challenges in software engineering.




Building Secure and Reliable Systems


Book Description

Can a system be considered truly reliable if it isn't fundamentally secure? Or can it be considered secure if it's unreliable? Security is crucial to the design and operation of scalable systems in production, as it plays an important part in product quality, performance, and availability. In this book, experts from Google share best practices to help your organization design scalable and reliable systems that are fundamentally secure. Two previous O’Reilly books from Google—Site Reliability Engineering and The Site Reliability Workbook—demonstrated how and why a commitment to the entire service lifecycle enables organizations to successfully build, deploy, monitor, and maintain software systems. In this latest guide, the authors offer insights into system design, implementation, and maintenance from practitioners who specialize in security and reliability. They also discuss how building and adopting their recommended best practices requires a culture that’s supportive of such change. You’ll learn about secure and reliable systems through: Design strategies Recommendations for coding, testing, and debugging practices Strategies to prepare for, respond to, and recover from incidents Cultural best practices that help teams across your organization collaborate effectively




Software Reliability


Book Description

Revised and updated for professional software engineers, systems analysts and project managers, this highly acclaimed book provides key concepts of software reliability and practical solutions for measuring reliability.




Site Reliability Engineering


Book Description

The overwhelming majority of a software system’s lifespan is spent in use, not in design or implementation. So, why does conventional wisdom insist that software engineers focus primarily on the design and development of large-scale computing systems? In this collection of essays and articles, key members of Google’s Site Reliability Team explain how and why their commitment to the entire lifecycle has enabled the company to successfully build, deploy, monitor, and maintain some of the largest software systems in the world. You’ll learn the principles and practices that enable Google engineers to make systems more scalable, reliable, and efficient—lessons directly applicable to your organization. This book is divided into four sections: Introduction—Learn what site reliability engineering is and why it differs from conventional IT industry practices Principles—Examine the patterns, behaviors, and areas of concern that influence the work of a site reliability engineer (SRE) Practices—Understand the theory and practice of an SRE’s day-to-day work: building and operating large distributed computing systems Management—Explore Google's best practices for training, communication, and meetings that your organization can use




Software Reliability


Book Description

Deals constructively with recognized software problems. Focuses on the unreliability of computer programs and offers state-of-the-art solutions. Covers—software development, software testing, structured programming, composite design, language design, proofs of program correctness, and mathematical reliability models. Written in an informal style for anyone whose work is affected by the unreliability of software. Examples illustrate key ideas, over 180 references.




Advances in System Reliability Engineering


Book Description

Recent Advances in System Reliability Engineering describes and evaluates the latest tools, techniques, strategies, and methods in this topic for a variety of applications. Special emphasis is put on simulation and modelling technology which is growing in influence in industry, and presents challenges as well as opportunities to reliability and systems engineers. Several manufacturing engineering applications are addressed, making this a particularly valuable reference for readers in that sector. - Contains comprehensive discussions on state-of-the-art tools, techniques, and strategies from industry - Connects the latest academic research to applications in industry including system reliability, safety assessment, and preventive maintenance - Gives an in-depth analysis of the benefits and applications of modelling and simulation to reliability




System Reliability Toolkit


Book Description




Software Reliability Techniques for Real-World Applications


Book Description

SOFTWARE RELIABILITY TECHNIQUES FOR REAL-WORLD APPLICATIONS SOFTWARE RELIABILITY TECHNIQUES FOR REAL-WORLD APPLICATIONS Authoritative resource providing step-by-step guidance for producing reliable software to be tailored for specific projects Software Reliability Techniques for Real-World Applications is a practical, up to date, go-to source that can be referenced repeatedly to efficiently prevent software defects, find and correct defects if they occur, and create a higher level of confidence in software products. From content development to software support and maintenance, the author creates a depiction of each phase in a project such as design and coding, operation and maintenance, management, product production, and concept development and describes the activities and products needed for each. Software Reliability Techniques for Real-World Applications introduces clear ways to understand each process of software reliability and explains how it can be managed effectively and reliably. The book is supported by a plethora of detailed examples and systematic approaches, covering analogies between hardware and software reliability to ensure a clear understanding. Overall, this book helps readers create a higher level of confidence in software products. In Software Reliability Techniques for Real-World Applications, readers will find specific information on: Defects, including where defects enter the project system, effects, detection, and causes of defects, and how to handle defects Project phases, including concept development and planning, requirements and interfaces, design and coding, and integration, verification, and validation Roadmap and practical guidelines, including at the start of a project, as a member of an organization, and how to handle troubled projects Techniques, including an introduction to techniques in general, plus techniques by organization (systems engineering, software, and reliability engineering) Software Reliability Techniques for Real-World Applications is a practical text on software reliability, providing over sixty-five different techniques and step-by-step guidance for producing reliable software. It is an essential and complete resource on the subject for software developers, software maintainers, and producers of software.




Contributions to Hardware and Software Reliability


Book Description

With better computing facilities now available, there is an ever-increasing need to ensure that elegant theoretical results on hardware reliability are computationally available. This book discusses those aspects which have relevance to computing systems and those where numerical computation was a problem. It is also well known that nearly 70% of the cost goes into software development and hence software reliability assumes special importance. The book not only gives an extensive review of the literature on software reliability but also provides direction in developing models which are flexible and can be used in a variety of testing environments. Besides, several alternative formulations of the release time problem are discussed along with variants such as allocation of testing effort resources to different modules of the software, or the testing effort control problem. Software reliability has now emerged as an independent discipline and requires a strong partnership between computer scientists, statisticians and operational researchers. This aspect is broadly highlighted in the book.