Epigenetic Regulation and Epigenomics


Book Description

Epigenetics is a term in biology referring to heritable traits that do not involve changes in the underlying DNA sequence of the organism. Epigenetic traits exist on top of or in addition to the traditional molecular basis for inheritance. The "epigenome" is a parallel to the word "genome," and refers to the overall epigenetic state of a cell. Cancer and stem cell research have gradually focused attention on these genome modifications. The molecular basis of epigenetics involves modifications to DNA and the chromatin proteins that associate with it. Methylation, for example, can silence a nearby gene and seems to be involved in some cancers. Epigenetics is beginning to form and take shape as a new scientific discipline, which will have a major impact on Medicine and essentially all fields of biology. Increasingly, researchers are unearthing links between epigenetics and a number of diseases. Although in recent years cancer has been the main focus of epigenetics, recent data suggests that epigenetic plays a critical role in psychology and psychopathology. It is being realized that normal behaviors such as maternal care and pathologies such as Schizophrenia and Alzheimer's might have an epigenetic basis. It is also becoming clear that nutrition and life experiences have epigenetic consequences. Discover more online content in the Encyclopedia of Molecular Cell Biology and Molecular Medicine.




Epigenetic Gene Expression and Regulation


Book Description

Epigenetic Gene Expression and Regulation reviews current knowledge on the heritable molecular mechanisms that regulate gene expression, contribute to disease susceptibility, and point to potential treatment in future therapies. The book shows how these heritable mechanisms allow individual cells to establish stable and unique patterns of gene expression that can be passed through cell divisions without DNA mutations, thereby establishing how different heritable patterns of gene regulation control cell differentiation and organogenesis, resulting in a distinct human organism with a variety of differing cellular functions and tissues. The work begins with basic biology, encompasses methods, cellular and tissue organization, topical issues in epigenetic evolution and environmental epigenesis, and lastly clinical disease discovery and treatment. Each highly illustrated chapter is organized to briefly summarize current research, provide appropriate pedagogical guidance, pertinent methods, relevant model organisms, and clinical examples. Reviews current knowledge on the heritable molecular mechanisms that regulate gene expression, contribute to disease susceptibility, and point to potential treatment in future therapies Helps readers understand how epigenetic marks are targeted, and to what extent transgenerational epigenetic changes are instilled and possibly passed onto offspring Chapters are replete with clinical examples to empower the basic biology with translational significance Offers more than 100 illustrations to distill key concepts and decipher complex science




Epigenetic Mechanisms of Gene Regulation


Book Description

Many inheritable changes in gene function are not explained by changes in the DNA sequence. Such epigenetic mechanisms are known to influence gene function in most complex organisms and include effects such as transposon function, chromosome imprinting, yeast mating type switching and telomeric silencing. In recent years, epigenetic effects have become a major focus of research activity. This monograph, edited by three well-known biologists from different specialties, is the first to review and synthesize what is known about these effects across all species, particularly from a molecular perspective, and will be of interest to everyone in the fields of molecular biology and genetics.




Introduction to Epigenetics


Book Description

This open access textbook leads the reader from basic concepts of chromatin structure and function and RNA mechanisms to the understanding of epigenetics, imprinting, regeneration and reprogramming. The textbook treats epigenetic phenomena in animals, as well as plants. Written by four internationally known experts and senior lecturers in this field, it provides a valuable tool for Master- and PhD- students who need to comprehend the principles of epigenetics, or wish to gain a deeper knowledge in this field. After reading this book, the student will: Have an understanding of the basic toolbox of epigenetic regulation Know how genetic and epigenetic information layers are interconnected Be able to explain complex epigenetic phenomena by understanding the structures and principles of the underlying molecular mechanisms Understand how misregulated epigenetic mechanisms can lead to disease




Epigenomics, from Chromatin Biology to Therapeutics


Book Description

Experts from academia, the biotechnology and pharmaceutical industries introduce biological, medical and methodological aspects of the emerging field of epigenomics.




Epigenetics, Nuclear Organization & Gene Function


Book Description

Epigenetics is the study of heritable changes in gene function that do not involve changes in the DNA sequence. These changes, consisting principally of DNA methylation, histone modifications, and non-coding RNAs, maintain or modulate the initial impact of regulatory factors that recognize and associate with particular genomic sequences. Epigenetic modifications are manifest in all aspects of normal cellular differentiation and function, but they can also have damaging effects that result in pathologies such as cancer. Research is continuously uncovering the role of epigenetics in a variety of human disorders, providing new avenues for therapeutic interventions and advances in regenerative medicine. This book's primary goal is to establish a framework that can be used to understand the basis of epigenetic regulation and to appreciate both its derivation from genetics and interdependence with genetic mechanisms. A further aim is to highlight the role played by the three-dimensional organization of the genetic material itself (the complex of DNA, histones and non-histone proteins referred to as chromatin), and its distribution within a functionally compartmentalized nucleus. This architectural organization of the genome plays a major role in the subsequent retrieval, interpretation, and execution of both genetic and epigenetic information.




Epigenetics, Brain and Behavior


Book Description

What lies at the heart of neuronal plasticity? Accumulating evidence points to epigenetics. This word originally indicated potentially heritable modifications in gene expression that do not involve changes in DNA sequence. Today this definition is much less strict, and epigenetic control is thought to include DNA methylation, histone modifications, histone variants, microRNA metabolic pathways and non-histone proteins modifications. Thus, while neuronal plasticity is rightly thought to be intimately associated to genomic control, it is critical to appreciate that there is much more to the genome than DNA sequence. Recent years have seen spectacular advances in the field of epigenetics. These have attracted the interest of researchers in many fields and evidence connecting epigenetic regulation to brain functions has been accumulating. Neurons daily convert a variety of external stimuli into rapid or long-lasting changes in gene expression. A variety of studies have centered on the molecular mechanisms implicated in epigenetic control and how these may operate in concert. It will be critical to unravel how specificity is achieved. Importantly, specific modifications seem to mediate both developmental processes and adult brain functions, such as synaptic plasticity and memory. Many aspects of the research in neurosciences and endocrinology during the upcoming decade will be dominated by the deciphering of epigenetic control. This book constitutes a compendium of the most updated views in the field.




Epigenetics: Development and Disease


Book Description

Epigenetics fine-tunes the life processes dictated by DNA sequences, but also kick-starts pathophysiological processes including diabetes, AIDS and cancer. This volume tracks the latest research on epigenetics, including work on new-generation therapeutics.







Epigenetics in Human Disease


Book Description

Epigenetics is one of the fastest growing fields of sciences, illuminating studies of human diseases by looking beyond genetic make-up and acknowledging that outside factors play a role in gene expression. The goal of this volume is to highlight those diseases or conditions for which we have advanced knowledge of epigenetic factors such as cancer, autoimmune disorders and aging as well as those that are yielding exciting breakthroughs in epigenetics such as diabetes, neurobiological disorders and cardiovascular disease. Where applicable, attempts are made to not only detail the role of epigenetics in the etiology, progression, diagnosis and prognosis of these diseases, but also novel epigenetic approaches to the treatment of these diseases. Chapters are also presented on human imprinting disorders, respiratory diseases, infectious diseases and gynecological and reproductive diseases. Since epigenetics plays a major role in the aging process, advances in the epigenetics of aging are highly relevant to many age-related human diseases. Therefore, this volume closes with chapters on aging epigenetics and breakthroughs that have been made to delay the aging process through epigenetic approaches. With its translational focus, this book will serve as valuable reference for both basic scientists and clinicians alike. Comprehensive coverage of fundamental and emergent science and clinical usage Side-by-side coverage of the basis of epigenetic diseases and their treatments Evaluation of recent epigenetic clinical breakthroughs