Body Physics


Book Description

"Body Physics was designed to meet the objectives of a one-term high school or freshman level course in physical science, typically designed to provide non-science majors and undeclared students with exposure to the most basic principles in physics while fulfilling a science-with-lab core requirement. The content level is aimed at students taking their first college science course, whether or not they are planning to major in science. However, with minor supplementation by other resources, such as OpenStax College Physics, this textbook could easily be used as the primary resource in 200-level introductory courses. Chapters that may be more appropriate for physics courses than for general science courses are noted with an asterisk symbol (*). Of course this textbook could be used to supplement other primary resources in any physics course covering mechanics and thermodynamics"--Textbook Web page.




Existence and Stability of Nash Equilibrium


Book Description

The book aims at describing the recent developments in the existence and stability of Nash equilibrium. The two topics are central to game theory and economics and have been extensively researched. Recent results on existence and stability of Nash equilibrium are scattered and the relationship between them has not been explained clearly. The book will make these results easily accessible and understandable to researchers in the field. Book jacket.




Advanced Thermodynamics for Engineers


Book Description

Although the basic theories of thermodynamics are adequately covered by a number of existing texts, there is little literature that addresses more advanced topics. In this comprehensive work the author redresses this balance, drawing on his twenty-five years of experience of teaching thermodynamics at undergraduate and postgraduate level, to produce a definitive text to cover thoroughly, advanced syllabuses. The book introduces the basic concepts which apply over the whole range of new technologies, considering: a new approach to cycles, enabling their irreversibility to be taken into account; a detailed study of combustion to show how the chemical energy in a fuel is converted into thermal energy and emissions; an analysis of fuel cells to give an understanding of the direct conversion of chemical energy to electrical power; a detailed study of property relationships to enable more sophisticated analyses to be made of both high and low temperature plant and irreversible thermodynamics, whose principles might hold a key to new ways of efficiently covering energy to power (e.g. solar energy, fuel cells). Worked examples are included in most of the chapters, followed by exercises with solutions. By developing thermodynamics from an explicitly equilibrium perspective, showing how all systems attempt to reach a state of equilibrium, and the effects of these systems when they cannot, the result is an unparalleled insight into the more advanced considerations when converting any form of energy into power, that will prove invaluable to students and professional engineers of all disciplines.




The Market


Book Description

This punchy book unites mainline mathematical economics and sometimes idiosyncratic political economy. Freshness is brought to the market concept giving general equilibrium theory a new lease of life, and an opening of thought on such matters as free trade, globalization and the environment. Where most theories of general equilibrium have been based on utility maximizing traders, Afriat here maintains the view that the topic essentially is concerned with aggregates and that anything to do with utility is at best secondary if not spurious. The book goes on to discuss political economy, in particular the idea of 'optimum', and its abuses, especially in doctrine related to the market. This novel book will be of equal appeal to mathematical thinkers, those interested in the theory of market and political economists.




Catastrophe Theory


Book Description




Nonequilibrium Thermodynamics


Book Description

Natural phenomena consist of simultaneously occurring transport processes and chemical reactions. These processes may interact with each other and may lead to self-organized structures, fluctuations, instabilities, and evolutionary systems. Nonequilibrium Thermodynamics, Third Edition emphasizes the unifying role of thermodynamics in analyzing the natural phenomena. This third edition updates and expands on the first and second editions by focusing on the general balance equations for coupled processes of physical, chemical, and biological systems. The new edition contains a new chapter on stochastic approaches to include the statistical thermodynamics, mesoscopic nonequilibrium thermodynamics, fluctuation theory, information theory, and modeling the coupled biochemical systems in thermodynamic analysis. This new addition also comes with more examples and practice problems. - Informs and updates on all the latest developments in the field - Contributions from leading authorities and industry experts - A useful text for seniors and graduate students from diverse engineering and science programs to analyze some nonequilibrium, coupled, evolutionary, stochastic, and dissipative processes - Highlights fundamentals of equilibrium thermodynamics, transport processes and chemical reactions - Expands the theory of nonequilibrium thermodynamics and its use in coupled transport processes and chemical reactions in physical, chemical, and biological systems - Presents a unified analysis for transport and rate processes in various time and space scales - Discusses stochastic approaches in thermodynamic analysis including fluctuation and information theories - Has 198 fully solved examples and 287 practice problems - An Instructor Resource containing the Solution Manual can be obtained from the author: [email protected]




Physics of Gravitating Systems I


Book Description

It would seem that any specialist in plasma physics studying a medium in which the interaction between particles is as distance-dependent as the inter action between stars and other gravitating masses would assert that the role of collective effects in the dynamics of gravitating systems must be decisive. However, among astronomers this point of view has been recog nized only very recently. So, comparatively recently, serious consideration has been devoted to theories of galactic spiral structure in which the dominant role is played by the orbital properties of individual stars rather than collec tive effects. In this connection we would like to draw the reader's attention to a difference in the scientific traditions of plasma physicists and astrono mers, whereby the former have explained the delay of the onset of controlled thermonuclear fusion by the "intrigues" of collective processes in the plasma, while many a generation of astronomers were calculating star motions, solar and lunar eclipses, and a number of other fine effects for many years ahead by making excellent use of only the laws of Newtonian mechanics. Therefore, for an astronomer, it is perhaps not easy to agree with the fact that the evolution of stellar systems is controlled mainly by collective effects, and the habitual methods of theoretical mechanics III astronomy must make way for the method of self-consistent fields.




Thermodynamics and Introductory Statistical Mechanics


Book Description

In this clear and concise introduction to thermodynamics and statistical mechanics the reader, who will have some previous exposure to thermodynamics, will be guided through each of the two disciplines separately initially to provide an in-depth understanding of the area and thereafter the connection between the two is presented and discussed. In addition, mathematical techniques are introduced at appropriate times, highlighting such use as: exact and inexact differentials, partial derivatives, Caratheodory's theorem, Legendre transformation, and combinatory analysis. * Emphasis is placed equally on fundamentals and applications * Several problems are included




Nonlinear Systems


Book Description

There has been much excitement over the emergence of new mathematical techniques for the analysis and control of nonlinear systems. In addition, great technological advances have bolstered the impact of analytic advances and produced many new problems and applications which are nonlinear in an essential way. This book lays out in a concise mathematical framework the tools and methods of analysis which underlie this diversity of applications.




Theory of Elasticity and Plasticity


Book Description

This book serves as a core text for university curricula in solid body mechanics and, at the same time, examines the main achievements of state of the art research in the mechanics of elastic and non-elastic materials. This latter goal of the book is achieved through rich bibliographic references, many from the authors’ own work. authors. Distinct from similar texts, there are no claims in this volume to a single universal theory of plasticity. However, solutions are given to some new problems and to the construction of models useful both in pedagogic terms for students and practical terms for professional design engineers. Examples include the authors’ decisions about the Brazilian test, stability of rock exposure, and pile foundations. Designed for both upper-level university students and specialists in the mechanics of deformable hard body, the material in this book serves as a source for numerous topics of course and diploma concentration.