Essential Linear Algebra with Applications


Book Description

Rooted in a pedagogically successful problem-solving approach to linear algebra, the present work fills a gap in the literature that is sharply divided between elementary texts and books that are too advanced to appeal to a wide audience. It clearly develops the theoretical foundations of vector spaces, linear equations, matrix algebra, eigenvectors, and orthogonality, while simultaneously emphasizing applications and connections to fields such as biology, economics, computer graphics, electrical engineering, cryptography, and political science. Ideal as an introduction to linear algebra, the extensive exercises and well-chosen applications also make this text suitable for advanced courses at the junior or senior undergraduate level. Furthermore, it can serve as a colorful supplementary problem book, reference, or self-study manual for professional scientists and mathematicians. Complete with bibliography and index, "Essential Linear Algebra with Applications" is a natural bridge between pure and applied mathematics and the natural and social sciences, appropriate for any student or researcher who needs a strong footing in the theory, problem-solving, and model-building that are the subject’s hallmark.




Essential Linear Algebra


Book Description

This text introduces linear algebra--boiled to its essence--presented in a clear and concise fashion. Designed around a single-semester undergraduate course, Essential Linear Algebra introduces key concepts, various real-world applications, and provides detailed yet understandable proofs of key results that are aimed towards students with no advanced preparation in proof writing. The level of sophistication gradually increases from beginning to end in order to prepare students for subsequent studies.We begin with a detailed introduction to systems of linear equations and elementary row operations. We then advance to a discussion of linear transformations, which provide a second, more geometric, interpretation of the operation of matrix-vector product. We go on to introduce vector spaces and their subspaces, the image and kernel of a transformation, and change of coordinates. Following, we discuss matrices of orthogonal projections and orthogonal matrices. Our penultimate chapter is devoted to the theory of determinants, which are presented, first, in terms of area and volume expansion factors of 2x2 and 3x3 matrices, respectively. We use a geometric understanding of volume in n-dimensions to introduce general determinants axiomatically as multilinear, antisymmetric mappings, and prove existence and uniqueness. Our final chapter is devoted to the theory of eigenvalues and eigenvectors. We conclude with a number of discussions on various types of diagonalization: real, complex, and orthogonal.




Basic Linear Algebra


Book Description

Basic Linear Algebra is a text for first year students leading from concrete examples to abstract theorems, via tutorial-type exercises. More exercises (of the kind a student may expect in examination papers) are grouped at the end of each section. The book covers the most important basics of any first course on linear algebra, explaining the algebra of matrices with applications to analytic geometry, systems of linear equations, difference equations and complex numbers. Linear equations are treated via Hermite normal forms which provides a successful and concrete explanation of the notion of linear independence. Another important highlight is the connection between linear mappings and matrices leading to the change of basis theorem which opens the door to the notion of similarity. This new and revised edition features additional exercises and coverage of Cramer's rule (omitted from the first edition). However, it is the new, extra chapter on computer assistance that will be of particular interest to readers: this will take the form of a tutorial on the use of the "LinearAlgebra" package in MAPLE 7 and will deal with all the aspects of linear algebra developed within the book.




Introduction to Applied Linear Algebra


Book Description

A groundbreaking introduction to vectors, matrices, and least squares for engineering applications, offering a wealth of practical examples.




Essential Mathematics for Games and Interactive Applications


Book Description

Essential Mathematics for Games and Interactive Applications, 2nd edition presents the core mathematics necessary for sophisticated 3D graphics and interactive physical simulations. The book begins with linear algebra and matrix multiplication and expands on this foundation to cover such topics as color and lighting, interpolation, animation and basic game physics. Essential Mathematics focuses on the issues of 3D game development important to programmers and includes optimization guidance throughout. The new edition Windows code will now use Visual Studio.NET. There will also be DirectX support provided, along with OpenGL - due to its cross-platform nature. Programmers will find more concrete examples included in this edition, as well as additional information on tuning, optimization and robustness. The book has a companion CD-ROM with exercises and a test bank for the academic secondary market, and for main market: code examples built around a shared code base, including a math library covering all the topics presented in the book, a core vector/matrix math engine, and libraries to support basic 3D rendering and interaction.




Linear Algebra in Action


Book Description

This book is based largely on courses that the author taught at the Feinberg Graduate School of the Weizmann Institute. It conveys in a user-friendly way the basic and advanced techniques of linear algebra from the point of view of a working analyst. The techniques are illustrated by a wide sample of applications and examples that are chosen to highlight the tools of the trade. In short, this is material that the author has found to be useful in his own research and wishes that he had been exposed to as a graduate student. Roughly the first quarter of the book reviews the contents of a basic course in linear algebra, plus a little. The remaining chapters treat singular value decompositions, convexity, special classes of matrices, projections, assorted algorithms, and a number of applications. The applications are drawn from vector calculus, numerical analysis, control theory, complex analysis, convex optimization, and functional analysis. In particular, fixed point theorems, extremal problems, best approximations, matrix equations, zero location and eigenvalue location problems, matrices with nonnegative entries, and reproducing kernels are discussed. This new edition differs significantly from the second edition in both content and style. It includes a number of topics that did not appear in the earlier edition and excludes some that did. Moreover, most of the material that has been adapted from the earlier edition has been extensively rewritten and reorganized.




Numerical Linear Algebra and Applications


Book Description

Full of features and applications, this acclaimed textbook for upper undergraduate level and graduate level students includes all the major topics of computational linear algebra, including solution of a system of linear equations, least-squares solutions of linear systems, computation of eigenvalues, eigenvectors, and singular value problems. Drawing from numerous disciplines of science and engineering, the author covers a variety of motivating applications. When a physical problem is posed, the scientific and engineering significance of the solution is clearly stated. Each chapter contains a summary of the important concepts developed in that chapter, suggestions for further reading, and numerous exercises, both theoretical and MATLAB and MATCOM based. The author also provides a list of key words for quick reference. The MATLAB toolkit available online, 'MATCOM', contains implementations of the major algorithms in the book and will enable students to study different algorithms for the same problem, comparing efficiency, stability, and accuracy.




Handbook of Linear Algebra, Second Edition


Book Description

With a substantial amount of new material, the Handbook of Linear Algebra, Second Edition provides comprehensive coverage of linear algebra concepts, applications, and computational software packages in an easy-to-use format. It guides you from the very elementary aspects of the subject to the frontiers of current research. Along with revisions and updates throughout, the second edition of this bestseller includes 20 new chapters. New to the Second Edition Separate chapters on Schur complements, additional types of canonical forms, tensors, matrix polynomials, matrix equations, special types of matrices, generalized inverses, matrices over finite fields, invariant subspaces, representations of quivers, and spectral sets New chapters on combinatorial matrix theory topics, such as tournaments, the minimum rank problem, and spectral graph theory, as well as numerical linear algebra topics, including algorithms for structured matrix computations, stability of structured matrix computations, and nonlinear eigenvalue problems More chapters on applications of linear algebra, including epidemiology and quantum error correction New chapter on using the free and open source software system Sage for linear algebra Additional sections in the chapters on sign pattern matrices and applications to geometry Conjectures and open problems in most chapters on advanced topics Highly praised as a valuable resource for anyone who uses linear algebra, the first edition covered virtually all aspects of linear algebra and its applications. This edition continues to encompass the fundamentals of linear algebra, combinatorial and numerical linear algebra, and applications of linear algebra to various disciplines while also covering up-to-date software packages for linear algebra computations.




Linear Algebra As An Introduction To Abstract Mathematics


Book Description

This is an introductory textbook designed for undergraduate mathematics majors with an emphasis on abstraction and in particular, the concept of proofs in the setting of linear algebra. Typically such a student would have taken calculus, though the only prerequisite is suitable mathematical grounding. The purpose of this book is to bridge the gap between the more conceptual and computational oriented undergraduate classes to the more abstract oriented classes. The book begins with systems of linear equations and complex numbers, then relates these to the abstract notion of linear maps on finite-dimensional vector spaces, and covers diagonalization, eigenspaces, determinants, and the Spectral Theorem. Each chapter concludes with both proof-writing and computational exercises.




Applied Linear Algebra


Book Description

This textbook develops the essential tools of linear algebra, with the goal of imparting technique alongside contextual understanding. Applications go hand-in-hand with theory, each reinforcing and explaining the other. This approach encourages students to develop not only the technical proficiency needed to go on to further study, but an appreciation for when, why, and how the tools of linear algebra can be used across modern applied mathematics. Providing an extensive treatment of essential topics such as Gaussian elimination, inner products and norms, and eigenvalues and singular values, this text can be used for an in-depth first course, or an application-driven second course in linear algebra. In this second edition, applications have been updated and expanded to include numerical methods, dynamical systems, data analysis, and signal processing, while the pedagogical flow of the core material has been improved. Throughout, the text emphasizes the conceptual connections between each application and the underlying linear algebraic techniques, thereby enabling students not only to learn how to apply the mathematical tools in routine contexts, but also to understand what is required to adapt to unusual or emerging problems. No previous knowledge of linear algebra is needed to approach this text, with single-variable calculus as the only formal prerequisite. However, the reader will need to draw upon some mathematical maturity to engage in the increasing abstraction inherent to the subject. Once equipped with the main tools and concepts from this book, students will be prepared for further study in differential equations, numerical analysis, data science and statistics, and a broad range of applications. The first author’s text, Introduction to Partial Differential Equations, is an ideal companion volume, forming a natural extension of the linear mathematical methods developed here.