Essentials of Nonlinear Circuit Dynamics with MATLAB® and Laboratory Experiments


Book Description

This book deals with nonlinear dynamics of electronic circuits, which could be used in robot control, secure communications, sensors and synchronized networks. The genesis of the content is related to a course on complex adaptive systems that has been held at the University of Catania since 2005. The efforts are devoted in order to emulate with nonlinear electronic circuits nonlinear dynamics. Step-by-step methods show the essential concepts of complex systems by using the Varela diagrams and accompanying MATLAB® exercises to reinforce new information. Special attention has been devoted to chaotic systems and networks of chaotic circuits by exploring the fundamentals, such as synchronization and control. The aim of the book is to give to readers a comprehensive view of the main concepts of nonlinear dynamics to help them better understand complex systems and their control through the use of electronics devices.




Essentials of Nonlinear Circuit Dynamics with MATLAB® and Laboratory Experiments


Book Description

This book deals with nonlinear dynamics of electronic circuits, which could be used in robot control, secure communications, sensors and synchronized networks. The genesis of the content is related to a course on complex adaptive systems that has been held at the University of Catania since 2005. The efforts are devoted in order to emulate with nonlinear electronic circuits nonlinear dynamics. Step-by-step methods show the essential concepts of complex systems by using the Varela diagrams and accompanying MATLAB® exercises to reinforce new information. Special attention has been devoted to chaotic systems and networks of chaotic circuits by exploring the fundamentals, such as synchronization and control. The aim of the book is to give to readers a comprehensive view of the main concepts of nonlinear dynamics to help them better understand complex systems and their control through the use of electronics devices.




500 Years After Leonardo Da Vinci Machines


Book Description

"The book focuses on the role of Leonardo da Vinci projects and inventions, specifically the interdisciplinarity of his studies that represents perhaps the first example of the paradigm of complex systems engineering. The projects are characterized within a modern conception of his thinking, looking at the main motivations behind his machines. The book also proposes a set of experimental realizations of the models made mainly in wood, using the actual concept of automatic control and microcontroller technology emphasizing that the Leonardo machines can be seen in agreement with modern current technology. The remote control of each machine is considered and the behavior of each monitored. Machines are revisited based on the transmission principle that adopts microcontrollers and bluetooth devices, studying the equipment behind the actuation of the systems. Thus, the paradigm of each machine is maintained unaltered while the latest technologies show the relevance of such inventions in the modern era. The study also stimulated more applications and future projects that can start from the original Leonardo projects and then proceed to the next centuries, providing readers simple and efficient ideas to innovate his projects using modern low-cost microcontrollers"--




Synchronization in Networks of Nonlinear Circuits


Book Description

This book addresses synchronization in networks of coupled systems. It illustrates the main aspects of the phenomenon through concise theoretical results and code, allowing readers to reproduce them and encouraging readers to pursue their own experimentation. The book begins by introducing the mathematical representation of nonlinear circuits and the code for their simulation. This is followed by a brief account of the concept of the complex network, which describes the main aspects of complex networks and the main model types, with a particular focus on the code used to study and reproduce the models. The focus then shifts to the process through which independent nonlinear circuits that follow different trajectories without coupling share some properties of their motion: synchronization. The authors present the main techniques for studying synchronization in complex networks, including the major measures, the stability properties and control techniques. The book then moves on to advanced topics in synchronization of complex networks by examining forms of synchronization in which not all the units share the same trajectory, namely chimera states, clustering synchronization, and relay and remote synchronization. Simple codes for experimentation with these topics and control methods are also provided. In closing, the book addresses the problem of synchronization in time-varying networks.




Control Of Imperfect Nonlinear Electromechanical Large Scale Systems: From Dynamics To Hardware Implementation


Book Description

This book focuses on a class of uncertain systems that are called imperfect, and shows how much systems can regularly work if an appropriate control strategy is adopted. Along with some practical well studied examples, a formalization of the models for imperfect system is considered and a control strategy is proposed. Experimental case studies on electromechanical systems are also included.New concepts, experimental innovative circuits and laboratory details allow the reader to implement at low cost the outlined strategy. Emergent topics in nonlinear device realization are emphasized with the aim to allow researchers and students to perform experiments with large scale electromechanical systems. Moreover, the possibility of using imperfections and noise to generate nonlinear strange behavior is discussed.




Computational Methods for Biological Models


Book Description

This book discusses computational methods related to biological models using mathematical tools and techniques. The book chapters concentrate on numerical and analytical techniques that provide a global solution for biological models while keeping long-term benefits in mind. The solutions are useful in closely understanding biological models, and the results will be very useful for mathematicians, engineers, doctors, scientists and researchers working on real-life biological models. This book provides significant and current knowledge of biological models related to real-life applications. The book covers both methods and applications.




Advances in Nonlinear Dynamics


Book Description

This third of three volumes includes papers from the second series of NODYCON, which was held virtually in February of 2021. The conference papers reflect a broad coverage of topics in nonlinear dynamics, ranging from traditional topics from established streams of research to those from relatively unexplored and emerging venues of research. These include · Complex dynamics of COVID-19: modeling, prediction and control · Nonlinear phenomena in bio-systems and eco-systems · Energy harvesting · MEMS/NEMS · Multifunctional structures, materials and metamaterials · Nonlinear waves · Chaotic systems, stochasticity, and uncertainty




Fundamentals of Chaos and Fractals for Cardiology


Book Description

This textbook serves as an introduction to nonlinear dynamics and fractals for physiological modeling. Examples and demonstrations from current research in cardiopulmonary engineering and neuro-systems engineering are provided, as well as lab and computer exercises that encourage readers to apply the course material. This is an ideal textbook for graduate students in biomedical engineering departments, researchers who analyze physiological data, and researchers interested in physiological modeling.




Electronics and Circuit Analysis Using MATLAB


Book Description

The use of MATLAB is ubiquitous in the scientific and engineering communities today, and justifiably so. Simple programming, rich graphic facilities, built-in functions, and extensive toolboxes offer users the power and flexibility they need to solve the complex analytical problems inherent in modern technologies. The ability to use MATLAB effectively has become practically a prerequisite to success for engineering professionals. Like its best-selling predecessor, Electronics and Circuit Analysis Using MATLAB, Second Edition helps build that proficiency. It provides an easy, practical introduction to MATLAB and clearly demonstrates its use in solving a wide range of electronics and circuit analysis problems. This edition reflects recent MATLAB enhancements, includes new material, and provides even more examples and exercises. New in the Second Edition: Thorough revisions to the first three chapters that incorporate additional MATLAB functions and bring the material up to date with recent changes to MATLAB A new chapter on electronic data analysis Many more exercises and solved examples New sections added to the chapters on two-port networks, Fourier analysis, and semiconductor physics MATLAB m-files available for download Whether you are a student or professional engineer or technician, Electronics and Circuit Analysis Using MATLAB, Second Edition will serve you well. It offers not only an outstanding introduction to MATLAB, but also forms a guide to using MATLAB for your specific purposes: to explore the characteristics of semiconductor devices and to design and analyze electrical and electronic circuits and systems.




Nonlinear Dynamics and Chaos


Book Description

This textbook is aimed at newcomers to nonlinear dynamics and chaos, especially students taking a first course in the subject. The presentation stresses analytical methods, concrete examples, and geometric intuition. The theory is developed systematically, starting with first-order differential equations and their bifurcations, followed by phase plane analysis, limit cycles and their bifurcations, and culminating with the Lorenz equations, chaos, iterated maps, period doubling, renormalization, fractals, and strange attractors.