Fundamentals of Applied Reservoir Engineering


Book Description

Fundamentals of Applied Reservoir Engineering introduces early career reservoir engineers and those in other oil and gas disciplines to the fundamentals of reservoir engineering. Given that modern reservoir engineering is largely centered on numerical computer simulation and that reservoir engineers in the industry will likely spend much of their professional career building and running such simulators, the book aims to encourage the use of simulated models in an appropriate way and exercising good engineering judgment to start the process for any field by using all available methods, both modern simulators and simple numerical models, to gain an understanding of the basic 'dynamics' of the reservoir –namely what are the major factors that will determine its performance. With the valuable addition of questions and exercises, including online spreadsheets to utilize day-to-day application and bring together the basics of reservoir engineering, coupled with petroleum economics and appraisal and development optimization, Fundamentals of Applied Reservoir Engineering will be an invaluable reference to the industry professional who wishes to understand how reservoirs fundamentally work and to how a reservoir engineer starts the performance process. - Covers reservoir appraisal, economics, development planning, and optimization to assist reservoir engineers in their decision-making. - Provides appendices on enhanced oil recovery, gas well testing, basic fluid thermodynamics, and mathematical operators to enhance comprehension of the book's main topics. - Offers online spreadsheets covering well test analysis, material balance, field aggregation and economic indicators to help today's engineer apply reservoir concepts to practical field data applications. - Includes coverage on unconventional resources and heavy oil making it relevant for today's worldwide reservoir activity.




Fundamentals of Reservoir Engineering


Book Description

"This book is fast becoming the standard text in its field", wrote a reviewer in the Journal of Canadian Petroleum Technology soon after the first appearance of Dake's book. This prediction quickly came true: it has become the standard text and has been reprinted many times. The author's aim - to provide students and teachers with a coherent account of the basic physics of reservoir engineering - has been most successfully achieved. No prior knowledge of reservoir engineering is necessary. The material is dealt with in a concise, unified and applied manner, and only the simplest and most straightforward mathematical techniques are used. This low-priced paperback edition will continue to be an invaluable teaching aid for years to come.




Basics of Reservoir Engi...


Book Description

The volume provides clear and concise information on reservoir engineering methods, ranging from specific geological and geophysical techniques applied to reservoirs, to the basics of reservoir simulation, with reference to well logging, fluid PVT studies and well testing. Emphasis is placed on recent methods such as the use of type curves in well test interpretation, and on horizontal drain holes. The information will help all specialists in the relevant disciplines such as geologists, geophysicists, production engineers and drillers. It will also be useful to a broader range of specialists such as computer scientists, legal experts, economists and research workers, in placing their work within a wider professional context and incorporating it into a multidisciplinary field of activity.




Fundamentals of Reservoir Rock Properties


Book Description

This book explains the basic technologies, concepts, approaches, and terms used in relation to reservoir rocks. Accessible to engineers in varying roles, it provides the tools necessary for building reservoir characterization and simulation models that improve resource definition and recovery, even in complex depositional environments. The book is enriched with numerous examples from a wide variety of applications, to help readers understand the topics. It also describes in detail the key relationships between the different rock properties and their variables. As such, it is of interest to researchers, engineers, lab technicians, and postgraduate students in the field of petroleum engineering.




Reservoir Engineering Handbook


Book Description

This book wxplains the fundamentals of reservoir engineering and their practical application in conducting a comprehensive field study.Two new chapters have been included in this second edition: chapter 14 and 15.




Reservoir Engineering


Book Description

Reservoir Engineering focuses on the fundamental concepts related to the development of conventional and unconventional reservoirs and how these concepts are applied in the oil and gas industry to meet both economic and technical challenges. Written in easy to understand language, the book provides valuable information regarding present-day tools, techniques, and technologies and explains best practices on reservoir management and recovery approaches. Various reservoir workflow diagrams presented in the book provide a clear direction to meet the challenges of the profession. As most reservoir engineering decisions are based on reservoir simulation, a chapter is devoted to introduce the topic in lucid fashion. The addition of practical field case studies make Reservoir Engineering a valuable resource for reservoir engineers and other professionals in helping them implement a comprehensive plan to produce oil and gas based on reservoir modeling and economic analysis, execute a development plan, conduct reservoir surveillance on a continuous basis, evaluate reservoir performance, and apply corrective actions as necessary. - Connects key reservoir fundamentals to modern engineering applications - Bridges the conventional methods to the unconventional, showing the differences between the two processes - Offers field case studies and workflow diagrams to help the reservoir professional and student develop and sharpen management skills for both conventional and unconventional reservoirs




Reservoir Engineering


Book Description

This book provides a clear and basic understanding of the concept of reservoir engineering to professionals and students in the oil and gas industry. The content contains detailed explanations of key theoretic and mathematical concepts and provides readers with the logical ability to approach the various challenges encountered in daily reservoir/field operations for effective reservoir management. Chapters are fully illustrated and contain numerous calculations involving the estimation of hydrocarbon volume in-place, current and abandonment reserves, aquifer models and properties for a particular reservoir/field, the type of energy in the system and evaluation of the strength of the aquifer if present. The book is written in oil field units with detailed solved examples and exercises to enhance practical application. It is useful as a professional reference and for students who are taking applied and advanced reservoir engineering courses in reservoir simulation, enhanced oil recovery and well test analysis.




Fundamentals of Fractured Reservoir Engineering


Book Description

In the modem language of reservoir engineering by reservoir description is understood the totality of basic local information concerning the reservoir rock and fluids which by various procedures are extrapolated over the entire reservoir. Fracture detection, evaluation and processing is another essential step in the process of fractured reservoir description. In chapter 2, all parameters related to fracture density and fracture intensity, together with various procedures of data processing are discussed in detail. After a number of field examples, developed in Chap. 3, the main objective remains the quantitative evaluation of physical properties. This is done in Chap. 4, where the evaluation of fractures porosity and permeability, their correlation and the equivalent ideal geometrical models versus those parameters are discussed in great detail. Special rock properties such as capillary pressure and relative permeability are reexamined in the light of a double-porosity reservoir rock. In order to complete the results obtained by direct measurements on rock samples, Chap. 5 examines fracturing through indirect measurements from various logging results. The entire material contained in these five chapters defines the basic physical parameters and indicates procedures for their evaluation which may be used further in the description of fractured reservoirs.




Petroleum Reservoir Engineering Practice


Book Description

The Complete, Up-to-Date, Practical Guide to Modern Petroleum Reservoir Engineering This is a complete, up-to-date guide to the practice of petroleum reservoir engineering, written by one of the world’s most experienced professionals. Dr. Nnaemeka Ezekwe covers topics ranging from basic to advanced, focuses on currently acceptable practices and modern techniques, and illuminates key concepts with realistic case histories drawn from decades of working on petroleum reservoirs worldwide. Dr. Ezekwe begins by discussing the sources and applications of basic rock and fluid properties data. Next, he shows how to predict PVT properties of reservoir fluids from correlations and equations of state, and presents core concepts and techniques of reservoir engineering. Using case histories, he illustrates practical diagnostic analysis of reservoir performance, covers essentials of transient well test analysis, and presents leading secondary and enhanced oil recovery methods. Readers will find practical coverage of experience-based procedures for geologic modeling, reservoir characterization, and reservoir simulation. Dr. Ezekwe concludes by presenting a set of simple, practical principles for more effective management of petroleum reservoirs. With Petroleum Reservoir Engineering Practice readers will learn to • Use the general material balance equation for basic reservoir analysis • Perform volumetric and graphical calculations of gas or oil reserves • Analyze pressure transients tests of normal wells, hydraulically fractured wells, and naturally fractured reservoirs • Apply waterflooding, gasflooding, and other secondary recovery methods • Screen reservoirs for EOR processes, and implement pilot and field-wide EOR projects. • Use practical procedures to build and characterize geologic models, and conduct reservoir simulation • Develop reservoir management strategies based on practical principles Throughout, Dr. Ezekwe combines thorough coverage of analytical calculations and reservoir modeling as powerful tools that can be applied together on most reservoir analyses. Each topic is presented concisely and is supported with copious examples and references. The result is an ideal handbook for practicing engineers, scientists, and managers—and a complete textbook for petroleum engineering students.




Working Guide to Reservoir Rock Properties and Fluid Flow


Book Description

Working Guide to Reservoir Rock Properties and Fluid Flow provides an introduction to the properties of rocks and fluids that are essential in petroleum engineering. The book is organized into three parts. Part 1 discusses the classification of reservoirs and reservoir fluids. Part 2 explains different rock properties, including porosity, saturation, wettability, surface and interfacial tension, permeability, and compressibility. Part 3 presents the mathematical relationships that describe the flow behavior of the reservoir fluids. The primary reservoir characteristics that must be considered include: types of fluids in the reservoir, flow regimes, reservoir geometry, and the number of flowing fluids in the reservoir. Each part concludes with sample problems to test readers knowledge of the topic covered. - Critical properties of reservoir rocks Fluid (oil, water, and gas) - PVT relationships - Methods to calculate hydrocarbons initially in place - Dynamic techniques to assess reservoir performance - Parameters that impact well/reservoir performance over time