Econometric Analysis of Model Selection and Model Testing


Book Description

In recent years econometricians have examined the problems of diagnostic testing, specification testing, semiparametric estimation and model selection. In addition researchers have considered whether to use model testing and model selection procedures to decide the models that best fit a particular dataset. This book explores both issues with application to various regression models, including the arbitrage pricing theory models. It is ideal as a reference for statistical sciences postgraduate students, academic researchers and policy makers in understanding the current status of model building and testing techniques.




From Data to Model


Book Description

The problem of obtaining dynamical models directly from an observed time-series occurs in many fields of application. There are a number of possible approaches to this problem. In this volume a number of such points of view are exposed: the statistical time series approach, a theory of guaranted performance, and finally a deterministic approximation approach. This volume is an out-growth of a number of get-togethers sponsered by the Systems and Decision Sciences group of the International Institute of Applied Systems Analysis (IIASA) in Laxenburg, Austria. The hospitality and support of this organization is gratefully acknowledged. Jan Willems Groningen, the Netherlands May 1989 TABLE OF CONTENTS Linear System Identification- A Survey page 1 M. Deistler A Tutorial on Hankel-Norm Approximation 26 K. Glover A Deterministic Approach to Approximate Modelling 49 C. Heij and J. C. Willems Identification - a Theory of Guaranteed Estimates 135 A. B. Kurzhanski Statistical Aspects of Model Selection 215 R. Shibata Index 241 Addresses of Authors 246 LINEAR SYSTEM IDENTIFICATION· A SURVEY M. DEISTLER Abstract In this paper we give an introductory survey on the theory of identification of (in general MIMO) linear systems from (discrete) time series data. The main parts are: Structure theory for linear systems, asymptotic properties of maximum likelihood type estimators, estimation of the dynamic specification by methods based on information criteria and finally, extensions and alternative approaches such as identification of unstable systems and errors-in-variables. Keywords Linear systems, parametrization, maximum likelihood estimation, information criteria, errors-in-variables.




Regression and Time Series Model Selection


Book Description

This important book describes procedures for selecting a model from a large set of competing statistical models. It includes model selection techniques for univariate and multivariate regression models, univariate and multivariate autoregressive models, nonparametric (including wavelets) and semiparametric regression models, and quasi-likelihood and robust regression models. Information-based model selection criteria are discussed, and small sample and asymptotic properties are presented. The book also provides examples and large scale simulation studies comparing the performances of information-based model selection criteria, bootstrapping, and cross-validation selection methods over a wide range of models.




Model Selection and Multimodel Inference


Book Description

A unique and comprehensive text on the philosophy of model-based data analysis and strategy for the analysis of empirical data. The book introduces information theoretic approaches and focuses critical attention on a priori modeling and the selection of a good approximating model that best represents the inference supported by the data. It contains several new approaches to estimating model selection uncertainty and incorporating selection uncertainty into estimates of precision. An array of examples is given to illustrate various technical issues. The text has been written for biologists and statisticians using models for making inferences from empirical data.




Feature Engineering and Selection


Book Description

The process of developing predictive models includes many stages. Most resources focus on the modeling algorithms but neglect other critical aspects of the modeling process. This book describes techniques for finding the best representations of predictors for modeling and for nding the best subset of predictors for improving model performance. A variety of example data sets are used to illustrate the techniques along with R programs for reproducing the results.




Forecasting: principles and practice


Book Description

Forecasting is required in many situations. Stocking an inventory may require forecasts of demand months in advance. Telecommunication routing requires traffic forecasts a few minutes ahead. Whatever the circumstances or time horizons involved, forecasting is an important aid in effective and efficient planning. This textbook provides a comprehensive introduction to forecasting methods and presents enough information about each method for readers to use them sensibly.




Data Segmentation and Model Selection for Computer Vision


Book Description

This edited volume explores several issues relating to parametric segmentation including robust operations, model selection criteria and automatic model selection, plus 2D and 3D scene segmentation. Emphasis is placed on robust model selection with techniques such as robust Mallows Cp, least K-th order statistical model fitting (LKS), and robust regression receiving much attention. With contributions from leading researchers, this is a valuable resource for researchers and graduated students working in computer vision, pattern recognition, image processing and robotics.




Analyzing data from nonrandomized group studies


Book Description

Researchers evaluating prevention and early intervention programs must often rely on diverse study designs that assign groups to various study conditions (e.g., intervention versus control). Although the strongest designs randomly assign these groups to conditions, researchers frequently must use nonrandomized research designs in which assignments are made based on the characteristics of the groups. With nonrandomized group designs, little guidance is available on how best to analyze the data. We provide guidance on which techniques work best under different data conditions and make recommendations to researchers about how to choose among the various techniques when analyzing data from a pre-test/post-test nonrandomized study. We use data from the Center for Substance Abuse Prevention’s Workplace Managed Care initiative to compare the performance of the various methods commonly applied in quasi-experimental and group assignment designs.




Hypothesis Testing and Model Selection in the Social Sciences


Book Description

Examining the major approaches to hypothesis testing and model selection, this book blends statistical theory with recommendations for practice, illustrated with real-world social science examples. It systematically compares classical (frequentist) and Bayesian approaches, showing how they are applied, exploring ways to reconcile the differences between them, and evaluating key controversies and criticisms. The book also addresses the role of hypothesis testing in the evaluation of theories, the relationship between hypothesis tests and confidence intervals, and the role of prior knowledge in Bayesian estimation and Bayesian hypothesis testing. Two easily calculated alternatives to standard hypothesis tests are discussed in depth: the Akaike information criterion (AIC) and Bayesian information criterion (BIC). The companion website ([ital]www.guilford.com/weakliem-materials[/ital]) supplies data and syntax files for the book's examples.




Model Selection and Inference


Book Description

Statisticians and applied scientists must often select a model to fit empirical data. This book discusses the philosophy and strategy of selecting such a model using the information theory approach pioneered by Hirotugu Akaike. This approach focuses critical attention on a priori modeling and the selection of a good approximating model that best represents the inference supported by the data. The book includes practical applications in biology and environmental science.