Random Fields


Book Description

Random variation is a fact of life that provides substance to a wide range of problems in the sciences, engineering, and economics. There is a growing need in diverse disciplines to model complex patterns of variation and interdependence using random fields, as both deterministic treatment and conventional statistics are often insufficient. An ideal random field model will capture key features of complex random phenomena in terms of a minimum number of physically meaningful and experimentally accessible parameters. This volume, a revised and expanded edition of an acclaimed book first published by the M I T Press, offers a synthesis of methods to describe and analyze and, where appropriate, predict and control random fields. There is much new material, covering both theory and applications, notably on a class of probability distributions derived from quantum mechanics, relevant to stochastic modeling in fields such as cosmology, biology and system reliability, and on discrete-unit or agent-based random processes.Random Fields is self-contained and unified in presentation. The first edition was found, in a review in EOS (American Geophysical Union) to be ?both technically interesting and a pleasure to read ? the presentation is clear and the book should be useful to almost anyone who uses random processes to solve problems in engineering or science ? and (there is) continued emphasis on describing the mathematics in physical terms.?




Random Fields Estimation


Book Description

This book contains a novel theory of random fields estimation of Wiener type, developed originally by the author and presented here. No assumption about the Gaussian or Markovian nature of the fields are made. The theory, constructed entirely within the framework of covariance theory, is based on a detailed analytical study of a new class of multidimensional integral equations basic in estimation theory.This book is suitable for graduate courses in random fields estimation. It can also be used in courses in functional analysis, numerical analysis, integral equations, and scattering theory.




Random Fields for Spatial Data Modeling


Book Description

This book provides an inter-disciplinary introduction to the theory of random fields and its applications. Spatial models and spatial data analysis are integral parts of many scientific and engineering disciplines. Random fields provide a general theoretical framework for the development of spatial models and their applications in data analysis. The contents of the book include topics from classical statistics and random field theory (regression models, Gaussian random fields, stationarity, correlation functions) spatial statistics (variogram estimation, model inference, kriging-based prediction) and statistical physics (fractals, Ising model, simulated annealing, maximum entropy, functional integral representations, perturbation and variational methods). The book also explores links between random fields, Gaussian processes and neural networks used in machine learning. Connections with applied mathematics are highlighted by means of models based on stochastic partial differential equations. An interlude on autoregressive time series provides useful lower-dimensional analogies and a connection with the classical linear harmonic oscillator. Other chapters focus on non-Gaussian random fields and stochastic simulation methods. The book also presents results based on the author’s research on Spartan random fields that were inspired by statistical field theories originating in physics. The equivalence of the one-dimensional Spartan random field model with the classical, linear, damped harmonic oscillator driven by white noise is highlighted. Ideas with potentially significant computational gains for the processing of big spatial data are presented and discussed. The final chapter concludes with a description of the Karhunen-Loève expansion of the Spartan model. The book will appeal to engineers, physicists, and geoscientists whose research involves spatial models or spatial data analysis. Anyone with background in probability and statistics can read at least parts of the book. Some chapters will be easier to understand by readers familiar with differential equations and Fourier transforms.




Random Fields: Analysis And Synthesis (Revised And Expanded New Edition)


Book Description

Random variation is a fact of life that provides substance to a wide range of problems in the sciences, engineering, and economics. There is a growing need in diverse disciplines to model complex patterns of variation and interdependence using random fields, as both deterministic treatment and conventional statistics are often insufficient. An ideal random field model will capture key features of complex random phenomena in terms of a minimum number of physically meaningful and experimentally accessible parameters. This volume, a revised and expanded edition of an acclaimed book first published by the M I T Press, offers a synthesis of methods to describe and analyze and, where appropriate, predict and control random fields. There is much new material, covering both theory and applications, notably on a class of probability distributions derived from quantum mechanics, relevant to stochastic modeling in fields such as cosmology, biology and system reliability, and on discrete-unit or agent-based random processes.Random Fields is self-contained and unified in presentation. The first edition was found, in a review in EOS (American Geophysical Union) to be “both technically interesting and a pleasure to read … the presentation is clear and the book should be useful to almost anyone who uses random processes to solve problems in engineering or science … and (there is) continued emphasis on describing the mathematics in physical terms.”













Stationary Sequences and Random Fields


Book Description

This book has a dual purpose. One of these is to present material which selec tively will be appropriate for a quarter or semester course in time series analysis and which will cover both the finite parameter and spectral approach. The second object is the presentation of topics of current research interest and some open questions. I mention these now. In particular, there is a discussion in Chapter III of the types of limit theorems that will imply asymptotic nor mality for covariance estimates and smoothings of the periodogram. This dis cussion allows one to get results on the asymptotic distribution of finite para meter estimates that are broader than those usually given in the literature in Chapter IV. A derivation of the asymptotic distribution for spectral (second order) estimates is given under an assumption of strong mixing in Chapter V. A discussion of higher order cumulant spectra and their large sample properties under appropriate moment conditions follows in Chapter VI. Probability density, conditional probability density and regression estimates are considered in Chapter VII under conditions of short range dependence. Chapter VIII deals with a number of topics. At first estimates for the structure function of a large class of non-Gaussian linear processes are constructed. One can determine much more about this structure or transfer function in the non-Gaussian case than one can for Gaussian processes. In particular, one can determine almost all the phase information.




Lectures on Probability and Second Order Random Fields


Book Description

This book of lecture notes contains theoretical background material required for computer generation of random fields, which is of interest in various fields of applied mathematics.The necessary probabilistic background suitable for applied work in engineering as well as signal and image processing is also covered.The book is a valuable guide for higher level engineering students.