Ethylene Production via Ethanol Dehydration - Cost Analysis - Ethylene E85A


Book Description

This report presents a cost analysis of polymer grade (PG) Ethylene production from hydrous ethanol using a dehydration process. The process under analysis is similar to the process developed by Dow Chemical. In this process, a selective oxidation reactor is used in the purification step to remove CO and hydrogen from the process. This report was developed based essentially on the following reference(s): (1) WO Patent 2011087478 (2) WO Patent 2011/002699, both issued to Dow Chemical Keywords: Ethene, Ethyl Alcohol, Selective Oxidation, Vapor-Phase Dehydration, Fixed-Bed Reactor, Renewable Feedstock, Green Ethylene




Ethylene Production Cost Analysis - Overview - Ethylene AA01


Book Description

This report presents alternatives for producing Ethylene from different feedstocks and a cost comparison of these alternatives, across different countries. More specifically, the report compares the costs of Ethylene production through the following pathways: * Pathway 1: Ethylene Production from Ethane * Pathway 2: Ethylene Production from Ethane and Propane * Pathway 3: Green Ethylene Production from Ethanol In Pathways 1 and 2, Ethylene is produced via steam cracking of different feedstocks: ethane and a mixture of ethane and propane. In Pathway 3, Ethylene is produced from ethanol, which is a renewable feedstock. The analysis presented in this report includes: * A comparison of the economic potential of the pathways listed above in several countries, comprising: - Comparative analysis of capital costs - Comparative analysis of production costs - Comparison between product price and raw materials costs of each pathway * An overview of each production pathway, including: - Raw material(s) consumption figures and product(s) generated - Related technology licensors and block flow diagram of representative industrial processes Keywords: Hydrocarbon Pyrolysis, Cracking Furnace, Ethene, Propene, Shale Gas, CB&I Lummus, Technip, Shaw Stone & Webster, Kellogg-Braun & Root, KBR, Linde, Green Ethylene, Braskem, Chematur Technologies, Petron Scientech, Scientific Design, Dow Chemical, BP, Ethanol Dehydration




Ethylene Production via Ethanol Dehydration - Cost Analysis - Ethylene E81A


Book Description

This report presents a cost analysis of polymer grade (PG) Ethylene production from hydrous ethanol using a dehydration process. The process under analysis is similar to the one proposed by BP Chemicals. This report examines one-time costs associated with the construction of a United States-based plant and the continuing costs associated with the daily operation of such a plant. More specifically, it discusses: * Capital Investment, broken down by: - Total fixed capital required, divided in production unit (ISBL); infrastructure (OSBL) and contingency - Alternative perspective on the total fixed capital, divided in direct costs, indirect costs and contingency - Working capital and costs incurred during industrial plant commissioning and start-up * Production cost, broken down by: - Manufacturing variable costs (raw materials, utilities) - Manufacturing fixed costs (maintenance costs, operating charges, plant overhead, local taxes and insurance) - Depreciation and corporate overhead costs * Raw materials consumption, products generation and labor requirements * Process block flow diagram and description of industrial site installations (production unit and infrastructure) This report was developed based essentially on the following reference(s): US Patent 8426664, issued to BP in 2013 Keywords: Ethene, Ethyl Alcohol, Vapor-Phase Dehydration, Diethyl Ether, Renewable Feedstock, Green Ethylene




Ethylene Production via Ethanol Dehydration - Cost Analysis - Ethylene E82A


Book Description

This report presents a cost analysis of polymer grade (PG) Ethylene production from hydrous ethanol using a dehydration process. The process under analysis is similar to the processes developed by Chematur and Petron. In this process, the reaction system is composed of multiple reactors in series and a single furnace. The system uses ethanol as heating fluid, with no injection of additional steam. This report examines one-time costs associated with the construction of a United States-based plant and the continuing costs associated with the daily operation of such a plant. More specifically, it discusses: * Capital Investment, broken down by: - Total fixed capital required, divided in production unit (ISBL); infrastructure (OSBL) and contingency - Alternative perspective on the total fixed capital, divided in direct costs, indirect costs and contingency - Working capital and costs incurred during industrial plant commissioning and start-up * Production cost, broken down by: - Manufacturing variable costs (raw materials, utilities) - Manufacturing fixed costs (maintenance costs, operating charges, plant overhead, local taxes and insurance) - Depreciation and corporate overhead costs * Raw materials consumption, products generation and labor requirements * Process block flow diagram and description of industrial site installations (production unit and infrastructure) This report was developed based essentially on the following reference(s): US Patent 20130178674, issued to Petron in 2013 Keywords: Ethene, Ethyl Alcohol, Vapor-Phase Dehydration, Fixed-Bed Reactor, Renewable Feedstock, Green Ethylene




Ethylene Production via Ethanol Dehydration - Cost Analysis - Ethylene E84A


Book Description

This report presents a cost analysis of polymer grade (PG) Ethylene production from hydrous ethanol using a dehydration process. The process under analysis is similar to the process developed by Scientific Design. In this process ethanol is dehydrated in the vapor phase to Ethylene in a system comprised of 1 reactor and 1 furnace. The product from reaction is passed through quench, compression and distillation, so Polymer Grade Ethylene can be obtained. This report was developed based essentially on the following reference(s): Bruscino, M., 'Biorefineries: Fact or Fiction?', Hydrocarbon Processing, August 2009, Vol. 88 No. 8 p.65-70 Keywords: Ethene, Ethyl Alcohol, SD, Syndol Catalyst, Vapor-Phase Dehydration, Fixed-Bed Reactor, Renewable Feedstock, Green Ethylene




Ethylene Production via Ethanol Dehydration - Cost Analysis - Ethylene E83A


Book Description

This report presents a cost analysis of polymer grade (PG) Ethylene production from hydrous ethanol using a dehydration process. The process under analysis is similar to the processes developed by Braskem and Petrobras. In this process, the reaction system is composed of multiple reactors and multiple furnaces. Before feeds each reactor, steam is mixed with ethanol as diluent to avoid an excessive temperature drop as dehydration reaction proceeds. This report was developed based essentially on the following reference(s): Keywords: Ethene, Ethyl Alcohol, Vapor-Phase Dehydration, Fixed-Bed Reactor, Renewable Feedstock, Green Ethylene




Cellulose Hydrolysis


Book Description

Recent economic trends, especially the worldwide decline in oil prices, and an altered political climate in the United States have combined to bring about major reductions in research on renewable energy resources. Yet there is no escaping the "facts of life" with regard to these resources. The days of inexpensive fossil energy are clearly numbered, the credibility of nuclear energy has fallen to a new low, and fusion energy stands decades or more from practical realization. Sooner than we may wish ,we will have to turn to renewable raw materials - plant "biomass" and, especially, wood - as significant suppliers of energy for both industry and everyday needs. It is therefore especially important to have a single, comprehensive and current source of information on a key step in any process for the technological exploitation of woody materials, cellulose hydrolysis. Further more, it is essential that any such treatment be unbiased with respect to the two methods - chemical and biochemical - for the breakdown of cellulose to sugars. Researchers on cellulose hydrolysis have frequently been chided by persons from industry, especially those individuals concerned with determining the economic feasibility of various technological alternatives. They tell us that schemes for the utilization of wood and other such resources fly in the face of economic realities.




Ethylene Production Cost Analysis - Overview - Ethylene AA01


Book Description

This report presents alternatives for producing Ethylene from different feedstocks and a cost comparison of these alternatives, across different countries. More specifically, the report compares the costs of Ethylene production through the following pathways:* Pathway 1: Ethylene Production from Ethane* Pathway 2: Ethylene Production from Ethane and Propane* Pathway 3: Green Ethylene Production from EthanolIn Pathways 1 and 2, Ethylene is produced via steam cracking of different feedstocks: ethane and a mixture of ethane and propane. In Pathway 3, Ethylene is produced from ethanol, which is a renewable feedstock.The analysis presented in this report includes:* A comparison of the economic potential of the pathways listed above in several countries, comprising: * Comparative analysis of capital costs * Comparative analysis of production costs * Comparison between product price and raw materials costs of each pathway * An overview of each production pathway, including: * Raw material(s) consumption figures and product(s) generated * Related technology licensors and block flow diagram of representative industrial processes Keywords: Hydrocarbon Pyrolysis, Cracking Furnace, Ethene, Propene, Shale Gas, CB&I Lummus, Technip, Shaw Stone & Webster, Kellogg-Braun & Root, KBR, Linde, Green Ethylene, Braskem, Chematur Technologies, Petron Scientech, Scientific Design, Dow Chemical, BP, Ethanol Dehydration




CG Ethylene Production via Ethanol Dehydration - Cost Analysis - Ethylene EB4A


Book Description

This report presents a cost analysis of chemical grade (CG) Ethylene production from hydrous ethanol using a dehydration process. The process under analysis is similar to the process developed by Scientific Design. In this process, the reaction system is comprised of only 1 reactor and 1 furnace. This report was developed based essentially on the following reference(s): Keywords: Ethene, Ethyl Alcohol, SD, Syndol Catalyst, Vapor-Phase Dehydration, Fixed-Bed Reactor, Renewable Feedstock, Green Ethylene




Applications in Industry


Book Description

Volume I contains a brief review of adsorption history and its development for practical purposes up until now. It also presents some important information on adsorbents and catalysts as well as on the methods of their characterization. The part of this volume dealing with practical industrial applications includes chapters presenting advanced technical tools for high capacity adsorption separation of liquid and gas mixtures, development of new adsorbents for removal of hazardous contaminants from combustion flue gases and wastewaters, degasification of coal seams and fabrication of inorganic membranes and their applications. A comprehensive review is also included on contemporary utility of self-assembled monolayers, adsorption proteins and their role in modern industry, adsorption methods in technology of optical fibre glasses, sol-gel technology, solid desiccant dehumidification systems, etc. The articles give both the scientific backgrounds of the phenomena discussed and emphasize their practical aspects.The chapters give not only brief current knowledge about the studied problems, but are also a source of topical literature on the subject. A comprehensive bibliography on adsorption principles, design data and adsorbent materials for industrial applications for the period 1967-1997 concludes the book.