Minerals Yearbook


Book Description










Data Mining VIII


Book Description

Information Engineering Management has found applications in many areas, including environmental conservation, economic planning, resource integration, cartography, urban planning, risk assessment, pollution control and transport management systems. Technology plays an active role in the relationship of Data Mining to environmental conservation planning.Bringing together papers presented at the Eighth International Conference on Data, Text and Web Mining and their Business Applications, this book addresses the new developments in this important field. Featured topics include: Text Mining; Web Content, Structures and Usage Mining; Clustering Technologies; Categorisation Methods; Link Analysis; Data Preparation; Applications in Business, Industry and Government; Applications in Science Engineering; National Security; Customer Relationship Management; Competitive Intelligence; Mining Environment and Geospatial Data; Business Process Management (BPM); Enterprise Information Systems; Applications of GIS and GPS; Applications of MIS; Remote Sensing; Information Systems Strategies and Methodologies and Bio Informatics.




Index Medicus


Book Description

Vols. for 1963- include as pt. 2 of the Jan. issue: Medical subject headings.




Data Warehousing and Mining: Concepts, Methodologies, Tools, and Applications


Book Description

In recent years, the science of managing and analyzing large datasets has emerged as a critical area of research. In the race to answer vital questions and make knowledgeable decisions, impressive amounts of data are now being generated at a rapid pace, increasing the opportunities and challenges associated with the ability to effectively analyze this data.




Data Mining and Medical Knowledge Management: Cases and Applications


Book Description

The healthcare industry produces a constant flow of data, creating a need for deep analysis of databases through data mining tools and techniques resulting in expanded medical research, diagnosis, and treatment. Data Mining and Medical Knowledge Management: Cases and Applications presents case studies on applications of various modern data mining methods in several important areas of medicine, covering classical data mining methods, elaborated approaches related to mining in electroencephalogram and electrocardiogram data, and methods related to mining in genetic data. A premier resource for those involved in data mining and medical knowledge management, this book tackles ethical issues related to cost-sensitive learning in medicine and produces theoretical contributions concerning general problems of data, information, knowledge, and ontologies.




Mining of Data with Complex Structures


Book Description

Mining of Data with Complex Structures: - Clarifies the type and nature of data with complex structure including sequences, trees and graphs - Provides a detailed background of the state-of-the-art of sequence mining, tree mining and graph mining. - Defines the essential aspects of the tree mining problem: subtree types, support definitions, constraints. - Outlines the implementation issues one needs to consider when developing tree mining algorithms (enumeration strategies, data structures, etc.) - Details the Tree Model Guided (TMG) approach for tree mining and provides the mathematical model for the worst case estimate of complexity of mining ordered induced and embedded subtrees. - Explains the mechanism of the TMG framework for mining ordered/unordered induced/embedded and distance-constrained embedded subtrees. - Provides a detailed comparison of the different tree mining approaches highlighting the characteristics and benefits of each approach. - Overviews the implications and potential applications of tree mining in general knowledge management related tasks, and uses Web, health and bioinformatics related applications as case studies. - Details the extension of the TMG framework for sequence mining - Provides an overview of the future research direction with respect to technical extensions and application areas The primary audience is 3rd year, 4th year undergraduate students, Masters and PhD students and academics. The book can be used for both teaching and research. The secondary audiences are practitioners in industry, business, commerce, government and consortiums, alliances and partnerships to learn how to introduce and efficiently make use of the techniques for mining of data with complex structures into their applications. The scope of the book is both theoretical and practical and as such it will reach a broad market both within academia and industry. In addition, its subject matter is a rapidly emerging field that is critical for efficient analysis of knowledge stored in various domains.







Advanced Data Mining and Applications


Book Description

This book constitutes the refereed proceedings of the First International Conference on Advanced Data Mining and Applications, ADMA 2005, held in Wuhan, China in July 2005. The conference was focused on sophisticated techniques and tools that can handle new fields of data mining, e.g. spatial data mining, biomedical data mining, and mining on high-speed and time-variant data streams; an expansion of data mining to new applications is also strived for. The 25 revised full papers and 75 revised short papers presented were carefully peer-reviewed and selected from over 600 submissions. The papers are organized in topical sections on association rules, classification, clustering, novel algorithms, text mining, multimedia mining, sequential data mining and time series mining, web mining, biomedical mining, advanced applications, security and privacy issues, spatial data mining, and streaming data mining.