Energy Efficiency Solutions for Historic Buildings


Book Description

This handbook holistically summarises the principles for the energy retrofitting of historic buildings, from the first diagnosis to the adequately designed intervention: preservation of the historic structure, user comfort, and energy efficiency. The content was developed by an interdisciplinary team of researchers. The wide range of different expertise, design examples, calculations, and measuring results from eight case studies makes this manual an indispensable tool for all architects, engineers, and energy consultants.




Energy Efficiency and Historic Buildings


Book Description

This guidance is for anyone who wishes to improve energy efficiency in an historic building. There are many reasons to do this. Improving energy efficiency will lower carbon emissions and fuel bills and often increase comfort. It also might be necessary to ensure that a building complies with legal requirements. More broadly, improving energy efficiency forms a part of the wider objective to achieve a sustainable environment. It is a widely held view that older buildings are not energy-efficient, and must be radically upgraded in order to improve their performance. In reality, the situation is more complicated, and assumptions about poor performance are not always justified. Even so, the energy and carbon performance of most historic buildings can be improved, which will help them remain viable and useful, now and in the future. But striking the right balance between benefit and harm is not easy. The unintended consequences of getting energy efficiency measures wrong (or doing them badly) include: harm to heritage values and significance, harm to human health and building fabric, and failure to achieve the predicted savings or reductions in environmental impact. Getting the balance right (and avoiding unintended consequences) is best done with a holistic approach that uses an understanding of a building, its context, its significance, and all the factors affecting energy use as the starting point for devising an energy-efficiency strategy. This 'whole building approach' ensures that energy-efficiency measures are suitable, robust, well integrated, properly coordinated and sustainable. In addition, this approach provides an effective framework for communication and understanding between the various parties involved in the process. These include assessors, designers, installers and the people who occupy and manage the building. A logical and systematic process of energy planning underpins the 'whole building approach'. This guidance describes the key stages of the process, illuminating any problems that might occur and providing solutions. It also includes checklists of practical measures that might be considered, along with links to sources of more detailed information about how to install these measures.




Energy Efficiency and Historic Buildings


Book Description

This guidance is aimed at homeowners and those managing or renting historic or older domestic buildings who may need to commission an Energy Performance Certificate (EPC) or who have received one for an older property that has been purchased or rented. Details are provided on the type of information included in an EPC, how it is calculated, and its limitations as an assessment method when applied to older buildings. The guidance also covers the issues to be taken into account when commissioning an EPC and considering its recommendations. Almost every older building can accommodate some energy improvements without harming either its special interest or environmental performance. However, an appropriate balance needs to be achieved between building conservation and measures to improve energy efficiency if lasting damage is to be avoided both to a building’s character and significance and its fabric.




Energy Efficiency in Buildings


Book Description

Buildings are one of the main causes of the emission of greenhouse gases in the world. Europe alone is responsible for more than 30% of emissions, or about 900 million tons of CO2 per year. Heating and air conditioning are the main cause of greenhouse gas emissions in buildings. Most buildings currently in use were built with poor energy efficiency criteria or, depending on the country and the date of construction, none at all. Therefore, regardless of whether construction regulations are becoming stricter, the real challenge nowadays is the energy rehabilitation of existing buildings. It is currently a priority to reduce (or, ideally, eliminate) the waste of energy in buildings and, at the same time, supply the necessary energy through renewable sources. The first can be achieved by improving the architectural design, construction methods, and materials used, as well as the efficiency of the facilities and systems; the second can be achieved through the integration of renewable energy (wind, solar, geothermal, etc.) in buildings. In any case, regardless of whether the energy used is renewable or not, the efficiency must always be taken into account. The most profitable and clean energy is that which is not consumed.




ICSDEC 2012


Book Description




Cost-Effective Energy Efficient Building Retrofitting


Book Description

Cost-Effective Energy Efficient Building Retrofitting:Materials, Technologies, Optimization and Case Studies provides essential knowledge for civil engineers, architects, and other professionals working in the field of cost-effective energy efficient building retrofitting. The building sector is responsible for high energy consumption and its global demand is expected to grow as each day there are approximately 200,000 new inhabitants on planet Earth. The majority of electric energy will continue to be generated from the combustion of fossil fuels releasing not only carbon dioxide, but also methane and nitrous oxide. Energy efficiency measures are therefore crucial to reduce greenhouse gas emissions of the building sector. Energy efficient building retrofitting needs to not only be technically feasible, but also economically viable. New building materials and advanced technologies already exist, but the knowledge to integrate all active components is still scarce and far from being widespread among building industry stakeholders. - Emphasizes cost-effective methods for the refurbishment of existing buildings, presenting state-of-the-art technologies - Includes detailed case studies that explain various methods and Net Zero Energy - Explains optimal analysis and prioritization of cost effective strategies




Data-Driven Modelling of Non-Domestic Buildings Energy Performance


Book Description

This book outlines the data-driven modelling of building energy performance to support retrofit decision-making. It explains how to determine the appropriate machine learning (ML) model, explores the selection and expansion of a reasonable dataset and discusses the extraction of relevant features and maximisation of model accuracy. This book develops a framework for the quick selection of a ML model based on the data and application. It also proposes a method for optimising ML models for forecasting buildings energy loads by employing multi-objective optimisation with evolutionary algorithms. The book then develops an energy performance prediction model for non-domestic buildings using ML techniques, as well as utilising a case study to lay out the process of model development. Finally, the book outlines a framework to choose suitable artificial intelligence methods for modelling building energy performances. This book is of use to both academics and practising energy engineers, as it provides theoretical and practical advice relating to data-driven modelling for energy retrofitting of non-domestic buildings.




ZEMCH: Toward the Delivery of Zero Energy Mass Custom Homes


Book Description

In this book, leading international experts explore the emerging concept of the zero energy mass custom home (ZEMCH) – designed to meet the need for social, economic, and environmental sustainability – and provide all of the knowledge required for the delivery of zero energy mass customized housing and community developments in developed and developing countries. The coverage is wide ranging, progressing from explanation of the meaning of sustainable development to discussion of challenges and trends in mass housing, the advantages and disadvantages of prefabricated methods of construction, and the concepts of mass customization, mass personalization, and inclusive design. A chapter on energy use will aid the reader in designing and retrofitting housing to reduce energy demand and/or improve energy end‐use efficiency. Passive design strategies and active technologies (especially solar) are thoroughly reviewed. Application of the ZEMCH construction criteria to new buildings and refurbishment of old houses is explained and the methods and value of building performance simulation, analyzed. The concluding chapter presents examples of ZEMCH projects from around the world, with discussion of marketing strategy, design, quality assurance, and delivery challenges. The book will be invaluable as a training/teaching tool for both students and industry partners.




Evaluation of Energy Efficiency and Flexibility in Smart Buildings


Book Description

This Special Issue “Evaluation of Energy Efficiency and Flexibility in Smart Buildings” addresses the relevant role of buildings as strategic instruments to improve the efficiency and flexibility of the overall energy system. This role of the built environment is not yet fully developed and exploited and the book content contributes to increasing the general awareness of achievable benefits. In particular, different topics are discussed, such as optimal control, innovative efficient technologies, methodological approaches, and country analysis about energy efficiency and energy flexibility potential of the built environment. The Special Issue offers valuable insights into the most recent research developments worldwide.




Environmental Impact Assessment of Buildings


Book Description

This Special Issue covers a wide range of areas—including building orientation, service life, use of photocatalytically active structures and PV facades, implications of transportation system, building types (i.e., high rise, multilevel, commercial, residential), life cycle assessment, and structural engineering—that need to be considered in the environmental impact assessment of buildings, and the chapters include case studies across the globe. Consideration of these strategies would help reduce energy and material consumption, environmental emissions, and waste generation associated with all phases of a building’s life cycle. Chapter 1 demonstrates that green star concrete exhibits the same structural properties as conventional concrete in Australia. Chapter 2 showed that the use of TiO2 as a photocatalyst on the surface of construction materials with a suitable stable binding agent, such as aggregates, would enable building walls to absorb NOx from air. This study found that TiO2 has the potential to reduce ambient concentrations of NOx from areas where this pollutant becomes concentrated under solar irradiation. Chapter 3 presents the life cycle assessment of architecturally integrated glass–glass photovoltaics in building facades to find the appropriate material composition for a multicolored PV façade offering improved environmental performance. Chapter 4 shows that urban office buildings lacking appropriate orientation experienced indoor overheating. Chapter 5 details four modeling approaches that were implemented to estimate buildings’ response towards load shedding. Chapter 6 covers the life cycle GHG emissions of high-rise residential housing block to discover opportunities for environmental improvement. Chapter 7 discusses an LCA framework that took into account variation in the service life of buildings associated with the use of different types of materials. Chapter 8 presents a useful data mining algorithm to conduct life cycle asset management in residential developments built on transport systems.