Evaporation, Evapotranspiration, and Irrigation Water Requirements


Book Description

MOP 70 is a comprehensive reference to estimating the water quantities needed for irrigation of crops projects based upon the physics of evaporation and evapotranspiration (ET).




The Grape Grower's Handbook


Book Description

"Updated and revised to keep pace with developments, the third edition of Grape Grower's Handbook: a Guide to Viticulture for Wine Production is meant to be a stand-alone publication that describes all aspects of wine grape production. The book is written in a nontechnical format designed to be practical and well-suited for vineyard applications."--Back cover.




Evapotranspiration


Book Description

This book covers topics on the basic models, assessments, and techniques to calculate evapotranspiration (ET) for practical applications in agriculture, forestry, and urban science. This simple and thorough guide provides the information and techniques necessary to develop, manage, interpret, and apply evapotranspiration ET data to practical applications. The simplicity of the contents assists technicians in developing ET data for effective water management.




Planning and Evaluation of Irrigation Projects


Book Description

Planning and Evaluation of Irrigation Projects: Methods and Implementation presents the considerations, options and factors necessary for effective implementation of irrigation strategies, going further to provide methods for evaluating the efficiency of systems-in-place for remedial correction as needed. As the first book to take this lifecycle approach to agricultural irrigation, it includes real-world examples not only on natural resource availability concerns, but also on financial impacts and measurements. With 21 chapters divided into two sections, this book is a valuable resource for agricultural and hydrology engineers, conservation scientists and anyone seeking to implement and maintain irrigation systems. - Uses real-world examples to present practical insights - Incorporates both planning and evaluation for full-scope understanding and application - Illustrates both potential benefits and limitations of irrigation solutions - Provides potential means to increase crop productivity that can result in improved farm income




Guidelines for Predicting Crop Water Requirements


Book Description

Calculation of crop evapotranspiration; Selection of crop coeficient; Calculation of field irrigation requirements.




Agroclimatology


Book Description

Can we unlock resilience to climate stress by better understanding linkages between the environment and biological systems? Agroclimatology allows us to explore how different processes determine plant response to climate and how climate drives the distribution of crops and their productivity. Editors Jerry L. Hatfield, Mannava V.K. Sivakumar, and John H. Prueger have taken a comprehensive view of agroclimatology to assist and challenge researchers in this important area of study. Major themes include: principles of energy exchange and climatology, understanding climate change and agriculture, linkages of specific biological systems to climatology, the context of pests and diseases, methods of agroclimatology, and the application of agroclimatic principles to problem-solving in agriculture.




Deficit Irrigation Practices


Book Description

In the context of improving water productivity, there is a growing interest in deficit irrigation, an irrigation practice whereby water supply is reduced below maximum levels and mild stress is allowed with minimal effects on yield. Under conditions of scarce water supply and drought, deficit irrigation can lead to greater economic gains than maximizing yields per unit of water for a given crop; farmers are more inclined to use water more efficiently, and more water-efficient cash crop selection helps optimize returns. However, this approach requires precise knowledge of crop response to water as drought tolerance varies considerably by species, cultivar and stage of growth. The studies present the latest research concepts and involve various practices for deficit irrigation. Both annual and perennial crops were exposed to different levels of water stress, either during a particular growth phase, throughout the whole growing season or in a combination of growth stages. The overall finding, based on the synthesis of the different contributions, is that deficit or regulated-deficit irrigation can be beneficial where appropriately applied. Substantial savings of water can be achieved with little impact on the quality and quantity of the harvested yield. However, to be successful, an intimate knowledge of crop behavior is required, as crop response to water stress varies considerably.




Remote Sensing of Evapotranspiration (ET)


Book Description

Evapotranspiration (ET) is a critical component of the water and energy balances, and the number of remote sensing-based ET products and estimation methods has increased in recent years. Various aspects of remote sensing of ET are reported in the 11 papers published in this book. The major research areas covered by this book include inter-comparison and performance evaluation of widely used one- and two-source energy balance models, a new dual-source model (Soil Plant Atmosphere and Remote Sensing Evapotranspiration, SPARSE), and a process-based model (ETMonitor); assessment of multi-source (e.g., remote sensing, reanalysis, and land surface model) ET products; development or improvement of data fusion frameworks to predict continuous daily ET at a high spatial resolution (field-scale or 30 m) by fusing the advanced spaceborne thermal emission reflectance radiometer (ASTER), the moderate resolution imaging spectroradiometer (MODIS), and Landsat data; and investigating uncertainties in ET estimates using an ET ensemble composed of several land surface models and diagnostic datasets. The effects of the differences between ET products on water resources and ecosystem management were also investigated. More accurate ET estimates and improved understanding of remotely sensed ET products are crucial for maximizing crop productivity while minimizing water losses and management costs.




Water, Climate Change, and Sustainability


Book Description

An in-depth review of sustainable concepts in water resources management under climate change Climate change continues to intensify existing pressures in water resources management, such as rapid population growth, land use changes, pollution, damming of rivers, and many others. Securing a reliable water supply—critical for achieving Sustainable Development Goals (SDGs)—requires understanding of the relation between finite water resources, climate variability/change, and various elements of sustainability. Water, Climate Change, and Sustainability is a timely and in-depth examination of the concept of sustainability as it relates to water resources management in the context of climate change risks. Featuring contributions by global authors, this edited volume is organized into three sections: Sustainability Concepts; Sustainability Approaches, Tools, and Techniques; and Sustainability in Practice. Detailed chapters describe the linkage between water and sustainable development, highlight the development and use of new measuring and reporting methods, and discuss the implementation of sustainability concepts in various water use sectors. Topics include localizing and mainstreaming global water sustainability initiatives, resilient water infrastructure for poverty reduction, urban water security for sustainable cities, climate actions and challenges for sustainable ecosystem services, and more. This important resource: Reviews contemporary scientific research and practical applications in the areas of water, climate change and sustainability in different regions of the world Discusses future directions of research and practices in relation to expected patterns of climate changes Covers a wide range of concepts, theories, and perspectives of sustainable development of water resources Features case studies of field and modelling techniques for analyzing water resources and evaluating vulnerability, security, and associated risks Discusses practical applications of water resources in contexts such as food security, global health, clean energy, and climate action Water, Climate Change, and Sustainability is an invaluable resource for policy makers water managers, researchers, and other professionals in the field, and an ideal text for graduate students in hydrogeology, climate change, geophysics, geochemistry, geography, water resources, and environmental science.




Crop Water Requirement


Book Description