Everyday Data Structures


Book Description

A practical guide to learning data structures simply and easily About This Book This book is a very practical, friendly, and useful guide that will help you analyze problems and choose the right data structures for your solution Learn to recognize data patterns for determining which structures apply to a given problem Explore the unique rules or "gotchas" that will help you become an excellent programmer Who This Book Is For If you're self-taught programmers in any language who wants to gain a solid understanding of data structures and how to use them to solve real-world problems in your day-to-day development work, then this book is for you. What You Will Learn A rapid overview of data types, applications for each type, best practices and high-level variations between platforms Review the most common data structures and build working examples in the languages used for mobile platform software development Understand advanced data structure concepts such as generic collections, searching and sorting algorithms, and recursion Learn to use Stacks (LIFO) and queues (FIFO) in your daily application Add/remove objects and nest arrays and dictionaries within another dictionary and understand why such architecture is often preferred or necessary Get acquainted with the tree structures such as heap, binary, and graphs, apply them to work Unleash the power of different sorting techniques such as bubble sort, quick sort, merge sort, insertion sort, and radix sort Perform searching operations on arrays, heaps, graphs, and binary trees in different languages In Detail If you want to learn different data structures and their real-world applications quickly through practical examples, then Everyday Data Structures is for you. This book can introduce you to new data structures and their potential applications through examples in languages common to mobile software development on the most popular platforms. The examples are presented with real-world concepts using language that everyone will understand. This book is logically divided into two parts; the first one covers the basic data structures that are built into most languages such as Objective-C, C#, Java, and Swift. It will cover detailed analysis of the common data structures such as arrays, lists, stacks, Queues, and heaps, typical applications, and specific concerns for each language. Each chapter will provide in-depth examples in several popular languages based on real-world applications. The second part will cover more advanced data structures such as generic collections, sorting, searching, and recursion and ways to use those structures in everyday applications. Style and approach This is a practical, result-focused guide, which is easy to follow, but also fast-paced and really satisfying with full of examples.




A Common-Sense Guide to Data Structures and Algorithms, Second Edition


Book Description

Algorithms and data structures are much more than abstract concepts. Mastering them enables you to write code that runs faster and more efficiently, which is particularly important for today’s web and mobile apps. Take a practical approach to data structures and algorithms, with techniques and real-world scenarios that you can use in your daily production code, with examples in JavaScript, Python, and Ruby. This new and revised second edition features new chapters on recursion, dynamic programming, and using Big O in your daily work. Use Big O notation to measure and articulate the efficiency of your code, and modify your algorithm to make it faster. Find out how your choice of arrays, linked lists, and hash tables can dramatically affect the code you write. Use recursion to solve tricky problems and create algorithms that run exponentially faster than the alternatives. Dig into advanced data structures such as binary trees and graphs to help scale specialized applications such as social networks and mapping software. You’ll even encounter a single keyword that can give your code a turbo boost. Practice your new skills with exercises in every chapter, along with detailed solutions. Use these techniques today to make your code faster and more scalable.




JavaScript Data Structures and Algorithms


Book Description

Explore data structures and algorithm concepts and their relation to everyday JavaScript development. A basic understanding of these ideas is essential to any JavaScript developer wishing to analyze and build great software solutions. You'll discover how to implement data structures such as hash tables, linked lists, stacks, queues, trees, and graphs. You'll also learn how a URL shortener, such as bit.ly, is developed and what is happening to the data as a PDF is uploaded to a webpage. This book covers the practical applications of data structures and algorithms to encryption, searching, sorting, and pattern matching. It is crucial for JavaScript developers to understand how data structures work and how to design algorithms. This book and the accompanying code provide that essential foundation for doing so. With JavaScript Data Structures and Algorithms you can start developing your knowledge and applying it to your JavaScript projects today. What You'll Learn Review core data structure fundamentals: arrays, linked-lists, trees, heaps, graphs, and hash-tableReview core algorithm fundamentals: search, sort, recursion, breadth/depth first search, dynamic programming, bitwise operators Examine how the core data structure and algorithms knowledge fits into context of JavaScript explained using prototypical inheritance and native JavaScript objects/data types Take a high-level look at commonly used design patterns in JavaScript Who This Book Is For Existing web developers and software engineers seeking to develop or revisit their fundamental data structures knowledge; beginners and students studying JavaScript independently or via a course or coding bootcamp.




Learning Functional Data Structures and Algorithms


Book Description

Learn functional data structures and algorithms for your applications and bring their benefits to your work now About This Book Moving from object-oriented programming to functional programming? This book will help you get started with functional programming. Easy-to-understand explanations of practical topics will help you get started with functional data structures. Illustrative diagrams to explain the algorithms in detail. Get hands-on practice of Scala to get the most out of functional programming. Who This Book Is For This book is for those who have some experience in functional programming languages. The data structures in this book are primarily written in Scala, however implementing the algorithms in other functional languages should be straight forward. What You Will Learn Learn to think in the functional paradigm Understand common data structures and the associated algorithms, as well as the context in which they are commonly used Take a look at the runtime and space complexities with the O notation See how ADTs are implemented in a functional setting Explore the basic theme of immutability and persistent data structures Find out how the internal algorithms are redesigned to exploit structural sharing, so that the persistent data structures perform well, avoiding needless copying. Get to know functional features like lazy evaluation and recursion used to implement efficient algorithms Gain Scala best practices and idioms In Detail Functional data structures have the power to improve the codebase of an application and improve efficiency. With the advent of functional programming and with powerful functional languages such as Scala, Clojure and Elixir becoming part of important enterprise applications, functional data structures have gained an important place in the developer toolkit. Immutability is a cornerstone of functional programming. Immutable and persistent data structures are thread safe by definition and hence very appealing for writing robust concurrent programs. How do we express traditional algorithms in functional setting? Won't we end up copying too much? Do we trade performance for versioned data structures? This book attempts to answer these questions by looking at functional implementations of traditional algorithms. It begins with a refresher and consolidation of what functional programming is all about. Next, you'll get to know about Lists, the work horse data type for most functional languages. We show what structural sharing means and how it helps to make immutable data structures efficient and practical. Scala is the primary implementation languages for most of the examples. At times, we also present Clojure snippets to illustrate the underlying fundamental theme. While writing code, we use ADTs (abstract data types). Stacks, Queues, Trees and Graphs are all familiar ADTs. You will see how these ADTs are implemented in a functional setting. We look at implementation techniques like amortization and lazy evaluation to ensure efficiency. By the end of the book, you will be able to write efficient functional data structures and algorithms for your applications. Style and approach Step-by-step topics will help you get started with functional programming. Learn by doing with hands-on code snippets that give you practical experience of the subject.




Think Data Structures


Book Description

If you’re a student studying computer science or a software developer preparing for technical interviews, this practical book will help you learn and review some of the most important ideas in software engineering—data structures and algorithms—in a way that’s clearer, more concise, and more engaging than other materials. By emphasizing practical knowledge and skills over theory, author Allen Downey shows you how to use data structures to implement efficient algorithms, and then analyze and measure their performance. You’ll explore the important classes in the Java collections framework (JCF), how they’re implemented, and how they’re expected to perform. Each chapter presents hands-on exercises supported by test code online. Use data structures such as lists and maps, and understand how they work Build an application that reads Wikipedia pages, parses the contents, and navigates the resulting data tree Analyze code to predict how fast it will run and how much memory it will require Write classes that implement the Map interface, using a hash table and binary search tree Build a simple web search engine with a crawler, an indexer that stores web page contents, and a retriever that returns user query results Other books by Allen Downey include Think Java, Think Python, Think Stats, and Think Bayes.




Mastering Algorithms with C


Book Description

Implementations, as well as interesting, real-world examples of each data structure and algorithm, are shown in the text. Full source code appears on the accompanying disk.




The Everyday Life of an Algorithm


Book Description

This open access book begins with an algorithm–a set of IF...THEN rules used in the development of a new, ethical, video surveillance architecture for transport hubs. Readers are invited to follow the algorithm over three years, charting its everyday life. Questions of ethics, transparency, accountability and market value must be grasped by the algorithm in a series of ever more demanding forms of experimentation. Here the algorithm must prove its ability to get a grip on everyday life if it is to become an ordinary feature of the settings where it is being put to work. Through investigating the everyday life of the algorithm, the book opens a conversation with existing social science research that tends to focus on the power and opacity of algorithms. In this book we have unique access to the algorithm’s design, development and testing, but can also bear witness to its fragility and dependency on others.




Purely Functional Data Structures


Book Description

This book describes data structures and data structure design techniques for functional languages.




A Practical Introduction to Data Structures and Algorithm Analysis


Book Description

This practical text contains fairly "traditional" coverage of data structures with a clear and complete use of algorithm analysis, and some emphasis on file processing techniques as relevant to modern programmers. It fully integrates OO programming with these topics, as part of the detailed presentation of OO programming itself.Chapter topics include lists, stacks, and queues; binary and general trees; graphs; file processing and external sorting; searching; indexing; and limits to computation.For programmers who need a good reference on data structures.




Data Structures and Algorithms in Java


Book Description

The design and analysis of efficient data structures has long been recognized as a key component of the Computer Science curriculum. Goodrich, Tomassia and Goldwasser's approach to this classic topic is based on the object-oriented paradigm as the framework of choice for the design of data structures. For each ADT presented in the text, the authors provide an associated Java interface. Concrete data structures realizing the ADTs are provided as Java classes implementing the interfaces. The Java code implementing fundamental data structures in this book is organized in a single Java package, net.datastructures. This package forms a coherent library of data structures and algorithms in Java specifically designed for educational purposes in a way that is complimentary with the Java Collections Framework.