Evidence Concerning Crack-tip Constraint and Strain-rate Effects in Fracture-toughness Testing


Book Description

The procedures for measuring the plane strain fracture toughness, K/sub Ic/, of metals were originally developed for relatively high yield strength materials, the toughnesses of which were not affected by stain rate. The application of these procedures to lower yield strength and higher toughness structural and pressure vessel steels have since revealed a perplexing combination of problems involving the effects of geometry, stable crack growth and strain rate on the measured values of toughness. Only the geometric problems were encountered in the development of the procedures for measuring K/sub Ic/. For fracture in the linear elastic range of the load-displacement curve, these problems were overcome by specifying specimen dimensions sufficiently large with respect of the plastic zone size at fracture. However, in the case of structural and pressure vessel steels, it is not always possible to test specimens large enough for fracture to occur prior to general yielding. Therefore, in these cases, the effects of large-scale yielding prior to fracture cannot be avoided, but since they presently have no analytical explanation they are being treated empirically.







Constraint Effects on Fracture Toughness


Book Description

The crack growth resistance (toughness) of a structural material depends on the geometry of the crack and the type of loading. These produce differences in the crack tip stress state referred to as the constraint. The stress state controls the deformation required to initiate fracture, and the mechanisms of fracture in steels are profoundly affected by the local constraint. This report describes the crack tip behaviour of 350WT ship steel, based on tests that characterized the fracture toughness of a ship steel plate over a range of constraint conditions. The tests were performed at room temperature on three-point bend bars that were pre-cracked to different crack depths. The mode of fracture was ductile tearing and resistance curves were calculated. Results for initiation toughness and growth resistance are characterized in both the linear elastic and elastic plastic formats. In addition, finite element modelling was used to determine numerically the crack tip stress fields, with special attention to the crack tip blunting behaviour.




Cracks and Fracture


Book Description




Fracture Toughness Testing


Book Description

A comprehensive survey is presented of current methods of fracture toughness testing that are based on linear elastic fracture mechanics. General principles are discussed in relation to the basic two-dimensional crack stress field model and in relation to real three-dimensional specimens. The designs and necessary dimensions of specimens for mixed mode and opening mode (plane strain) crack toughness measurement are considered in detail. Methods of test instrumentation and procedure are described. Expressions for the calculation of crack toughness values are given for the common types of specimens.













Fracture Toughness


Book Description