Encyclopedia of Astrobiology


Book Description

The interdisciplinary field of Astrobiology constitutes a joint arena where provocative discoveries are coalescing concerning, e.g. the prevalence of exoplanets, the diversity and hardiness of life, and its increasingly likely chances for its emergence. Biologists, astrophysicists, biochemists, geoscientists and space scientists share this exciting mission of revealing the origin and commonality of life in the Universe. The members of the different disciplines are used to their own terminology and technical language. In the interdisciplinary environment many terms either have redundant meanings or are completely unfamiliar to members of other disciplines. The Encyclopedia of Astrobiology serves as the key to a common understanding. Each new or experienced researcher and graduate student in adjacent fields of astrobiology will appreciate this reference work in the quest to understand the big picture. The carefully selected group of active researchers contributing to this work and the expert field editors intend for their contributions, from an internationally comprehensive perspective, to accelerate the interdisciplinary advance of astrobiology.




Europa


Book Description

Few worlds are as tantalizing and enigmatic as Europa, whose complex icy surface intimates the presence of an ocean below. Europa beckons for our understanding and future exploration, enticing us with the possibilities of a water-rich environment and the potential for life beyond Earth. This volume in the Space Science Series, with more than 80 contributing authors, reveals the discovery and current understanding of Europa’s icy shell, subsurface ocean, presumably active interior, and myriad inherent interactions within the Jupiter environment. Europa is the foundation upon which the coming decades of scientific advancement and exploration of this world will be built, making it indispensable for researchers, students, and all who hold a passion for exploration.




Accretion Processes in Star Formation


Book Description

This first comprehensive account of the dynamical processes in the formation of stars and disks from which planets ultimately form.




The Formation and Early Evolution of Stars


Book Description

Starburst regions in nearby and distant galaxies have a profound impact on our understanding of the early universe. This new, substantially updated and extended edition of Norbert Schulz’s unique book "From Dust to Stars" describes complex physical processes involved in the creation and early evolution of stars. It illustrates how these processes reveal themselves from radio wavelengths to high energy X-rays and gamma–rays, with special reference towards high energy signatures. Several sections devoted to key analysis techniques demonstrate how modern research in this field is pursued and new chapters are introduced on massive star formation, proto-planetary disks and observations of young exoplanets. Recent advances and contemporary research on the theory of star formation are explained, as are new observations, specifically from the three great observatories of the Spitzer Space Telescope, the Hubble Space Telescope and the Chandra X-Ray Observatory which all now operate at the same time and make high resolution space based observing in its prime. As indicated by the new title two new chapters have been included on proto-planetary disks and young exoplanets. Many more colour images illustrate attractive old and new topics that have evolved in recent years. The author gives updates in theory, fragmentation, dust, and circumstellar disks and emphasizes and strengthens the targeting of graduate students and young researchers, focusing more on computational approaches in this edition.




Very Low-Mass Stars and Brown Dwarfs


Book Description

This volume provides a state-of-the-art review of our current knowledge of brown dwarfs and very low-mass stars. The hunt for and study of these elusive objects is currently one of the most dynamic areas of research in astronomy for two reasons. Brown dwarfs bridge the gap between stars and planets, and they may constitute an important part of the 'dark matter' of the Universe. This volume presents review articles from a team of international authorities who gathered at a conference in La Palma to assess the spectacular progress that has been made in this field in the last few years.




Meteorites and the Early Solar System II


Book Description

They range in size from microscopic particles to masses of many tons. The geologic diversity of asteroids and other rocky bodies of the solar system are displayed in the enormous variety of textures and mineralogies observed in meteorites. The composition, chemistry, and mineralogy of primitive meteorites collectively provide evidence for a wide variety of chemical and physical processes. This book synthesizes our current understanding of the early solar system, summarizing information about processes that occurred before its formation. It will be valuable as a textbook for graduate education in planetary science and as a reference for meteoriticists and researchers in allied fields worldwide.




Origins and Evolution of Life


Book Description

Devoted to exploring questions about the origin and evolution of life in our Universe, this highly interdisciplinary book brings together a broad array of scientists. Thirty chapters assembled in eight major sections convey the knowledge accumulated and the richness of the debates generated by this challenging theme. The text explores the latest research on the conditions and processes that led to the emergence of life on Earth and, by extension, perhaps on other planetary bodies. Diverse sources of knowledge are integrated, from astronomical and geophysical data, to the role of water, the origin of minimal life properties and the oldest traces of biological activity on our planet. This text will not only appeal to graduate students but to the large body of scientists interested in the challenges presented by the origin of life, its evolution, and its possible existence beyond Earth.




Astronomy with Radioactivities


Book Description

This book introduces the reader to the field of nuclear astrophysics, i.e. the acquisition and reading of measurements on unstable isotopes in different parts of the universe. The authors explain the role of radioactivities in astrophysics, discuss specific sources of cosmic isotopes and in which special regions they can be observed. More specifically, the authors address stars of different types, stellar explosions which terminate stellar evolutions, and other explosions triggered by mass transfers and instabilities in binary stars. They also address nuclear reactions and transport processes in interstellar space, in the contexts of cosmic rays and of chemical evolution. A special chapter is dedicated to the solar system which even provides material samples. The book also contains a description of key tools which astrophysicists employ in those particular studies and a glossary of key terms in astronomy with radioactivities.




High Angular Resolution Studies of the Structure and Evolution of Protoplanetary Disks


Book Description

Young stars are surrounded by massive, rotating disks of dust and gas, which supply a reservoir of material that may be incorporated into planets or accreted onto the central star. In this dissertation, I use high angular resolution observations at a range of wavelengths to understand the structure, ubiquity, and evolutionary timescales of protoplanetary disks. First, I describe a study of Class I protostars, objects believed to be at an evolutionary stage between collapsing spherical clouds and fully-assembled young stars surrounded by protoplanetary disks. I use a Monte Carlo radiative transfer code to model new 0.9 micron scattered light images, 1.3 mm continuum images, and broadband spectral energy distributions. This modeling shows that Class I sources are probably surrounded by massive protoplanetary disks embedded in massive infalling envelopes. For the best-fitting models of the circumstellar dust distributions, I determine several important properties, including envelope and disk masses, mass infall rates, and system inclinations, and I use these results to constrain the evolutionary stage of these objects. Second, I discuss observations of the innermost regions of more evolved disks around T Tauri and Herbig Ae/Be stars, obtained with the Palomar Testbed and Keck Interferometers. I constrain the spatial and temperature structure of the circumstellar material at sub-AU radii, and demonstrate that lower-mass stars are surrounded by inclined disks with puffed-up inner edges 0.1-1 AU from the star. In contrast, the truncated inner disks around more massive stars may not puff-up, indicating that disk structure depends on stellar properties. I discuss the implications of these results for disk accretion, terrestrial planet formation and giant planet migration. Finally, I put these detailed studies of disk structure into a broader context by constraining the mass distribution and evolutionary timescales of circumstellar disks. Using the Owens Valley Millimeter Array, I mapped the millimeter continuum emission toward >300 low-mass stars in the NGC 2024 and Orion Nebula clusters. These observations demonstrate that the average disk mass in each cluster is comparable to the "minimum-mass protosolar nebula," and that there may be disk evolution on one million year timescales.




Protoplanetary Dust


Book Description

The first comprehensive overview of planet formation for students and researchers in astronomy, cosmochemistry, laboratory astrophysics and planetary sciences.