Evolutionary and Adaptive Computing in Engineering Design


Book Description

Following an introduction to the various techniques and examples of their routine application, this potential is explored through the introduction of various strategies that support searches across a far broader set of possible design solutions within time and budget constraints. Generic problem areas investigated include: - design decomposition; - whole-system design; - multi-objective and constraint satisfaction; - human-computer interaction; - computational expense. Appropriate strategies that help overcome problems often encountered when integrating computer-based techniques with complex, real-world design environments are described. A straightforward approach coupled with examples supports a rapid understanding of the manner in which such strategies can best be designed to handle the complexities of a particular problem.




Adaptive Computing in Design and Manufacture


Book Description

The third evolutionary I adaptive computing conference organised by the Plymouth Engineering Design Centre (PEDC) at the University of Plymouth again explores the utility of various adaptive search algorithms and complementary computational intelligence techniques within the engineering design and manufacturing domains. The intention is to investigate strategies and techniques that are of benefit not only as component I system optimisers but also as exploratory design tools capable of supporting the differing requirements of conceptual, embodiment and detailed design whilst taking into account the many manufacturing criteria influencing design direction. Interest in the integration of adaptive computing technologies with engineering has been rapidly increasing in recent years as practical examples illustrating their potential relating to system performance and design process efficiency have become more apparent. This is in addition to the realisation of significant commercial benefits from the application of evolutionary planning and scheduling strategies. The development of this conference series from annual PEDC one day workshops to the biennial 'Adaptive Computing in Engineering Design and Control' conference and this year's event reflects this growth in both academic and industrial interest. The name change to include manufacture relates to a desire to increase cover of integrated product development aspects, facility layout and scheduling in addition to process I machine control.




Adaptive Computing in Design and Manufacture V


Book Description

The Adaptive Computing in Design and Manufacture Conference series is now in its tenth year and has become a well-established, application-oriented meeting recognised by several UK Engineering Institutions and the International Society of Genetic and Evolutionary Computing. The main theme of the conference again relates to the integration of evolutionary and adaptive computing technologies with design and manufacturing processes whilst also taking into account complementary advanced computing technologies. Evolutionary and adaptive computing techniques continue to increase their penetration of industrial and commercial practice as their powerful search, exploration and optimisation capabilities become ever more apparent. The last two years have seen a very significant increase in the development of commercial software tools utilising adaptive computing technologies and the emergence of related commercial research and consultancy organisations supporting the introduction of best practice in terms of industrial utilisation. Adaptive Computing in Design and Manufacture V is comprised of selected papers that cover a diverse set of industrial application areas including: engineering design and design environments, manufacturing process design, scheduling and control, electronic circuit design, fault detection. Various aspects of search and optimisation such as multi-objective and constrained optimisation are also investigated in the context of integration with industrial processes. In addition to evolutionary computing techniques, both neural-net and agent-based technologies play a role in a number of contributions. This collection of papers will be of particular interest to both industrial researchers and practitioners in addition to the academic research communities of engineering, operational research and computer science.




Design by Evolution


Book Description

Evolution is Nature’s design process. The natural world is full of wonderful examples of its successes, from engineering design feats such as powered flight, to the design of complex optical systems such as the mammalian eye, to the merely stunningly beautiful designs of orchids or birds of paradise. With increasing computational power, we are now able to simulate this process with greater fidelity, combining complex simulations with high-performance evolutionary algorithms to tackle problems that used to be impractical. This book showcases the state of the art in evolutionary algorithms for design. The chapters are organized by experts in the following fields: evolutionary design and "intelligent design" in biology, art, computational embryogeny, and engineering. The book will be of interest to researchers, practitioners and graduate students in natural computing, engineering design, biology and the creative arts.




Adaptive Computing in Design and Manufacture VI


Book Description

The Adaptive Computing in Design and Manufacture conference series has become a well-established, largely application-oriented meeting recognised by several UK Engineering Institutions and the International Society of Genetic and Evolutionary Computing. The main theme of the series relates to the integration of evolutionary and adaptive computing technologies with design and manufacturing processes whilst also taking into account complementary advanced computing technologies. Evolutionary and adaptive computing techniques continue to increase their penetration of industrial and commercial practice as awareness of their powerful search, exploration and optimisation capabilities becomes ever more prevalent, and increasing desk-top computational capability renders stochastic population-based search a far more viable proposition. There has been a significant increase in the development and integration of commercial software tools utilising adaptive computing technologies and the emergence of related commercial research and consultancy organisations supporting the introduction of best practice in terms of industrial utilisation. The book is comprised of selected papers that cover a diverse set of industrial application areas including engineering design and design environments and manufacturing process design, scheduling and control. Various aspects of search, exploration and optimisation are investigated in the context of integration with industrial processes including multi-objective and constraint satisfaction, development and utilization of meta-models, algorithm and strategy development and human-centric evolutionary approaches. The role of agent-based and neural net technologies in terms of supporting search processes and providing an alternative simulation environment is also explored. This collection of papers will be of particular interest to both industrial researchers and practitioners in addition to the academic research communities across engineering, operational research and computer science.




Evolutionary Design by Computers


Book Description

"Evolutionary Design By Computers offers an enticing preview of the future of computer-aided design: Design by Darwin." Lawrence J. Fogel, President, Natural Selection, Inc. "Evolutionary design by computers is the major revolution in design thinking of the 20th century and this book is the best introduction available." Professor John Frazer, Swire Chair and Head of School of Design, the Hong Kong Polytechnic University, Author of "An Evolutionary Architecture" "Peter Bentley has assembled and edited an important collection of papers that demonstrate, convincingly, the utility of evolutionary computation for engineering solutions to complex problems in design." David B. Fogel, Editor-in-Chief, IEEE Transactions on Evolutionary Computation Some of the most startling achievements in the use of computers to automate design are being accomplished by the use of evolutionary search algorithms to evolve designs. Evolutionary Design By Computers provides a showcase of the best and most original work of the leading international experts in Evolutionary Computation, Engineering Design, Computer Art, and Artificial Life. By bringing together the highest achievers in these fields for the first time, including a foreword by Richard Dawkins, this book provides the definitive coverage of significant developments in Evolutionary Design. This book explores related sub-areas of Evolutionary Design, including: design optimization creative design the creation of art artificial life. It shows for the first time how techniques in each area overlap, and promotes the cross-fertilization of ideas and methods.




Introduction to Evolutionary Computing


Book Description

The first complete overview of evolutionary computing, the collective name for a range of problem-solving techniques based on principles of biological evolution, such as natural selection and genetic inheritance. The text is aimed directly at lecturers and graduate and undergraduate students. It is also meant for those who wish to apply evolutionary computing to a particular problem or within a given application area. The book contains quick-reference information on the current state-of-the-art in a wide range of related topics, so it is of interest not just to evolutionary computing specialists but to researchers working in other fields.




Bio-Inspired Computing -- Theories and Applications


Book Description

This book constitutes the proceedings of the 10th International Conference on Bio-Inspired Computing: Theories and Applications, BIC-TA 2015, held in Hefei, China, in September 2015.The 63 revised full papers presented were carefully reviewed and selected from 182 submissions. The papers deal with the following main topics: evolutionary computing, neural computing, DNA computing, and membrane computing.




Evolvable Systems: From Biology to Hardware


Book Description

This book constitutes the refereed proceedings of the 7th International Conference on Evolvable Systems, ICES 2007, held in Wuhan, China, in September 2007. The 41 revised full papers collected in this volume are organized in topical sections on digital hardware evolution, analog hardware evolution, bio-inspired systems, mechanical hardware evolution, evolutionary design, evolutionary algorithms in hardware design, and hardware implementation of evolutionary algorithms.




Adapting Hardware Systems by Means of Multi-Objective Evolution


Book Description

Reconfigurable circuit devices have opened up a fundamentally new way of creating adaptable systems. Combined with artificial evolution, reconfigurable circuits allow an elegant adaptation approach to compensating for changes in the distribution of input data, computational resource errors, and variations in resource requirements. Referred to as "Evolvable Hardware" (EHW), this paradigm has yielded astonishing results for traditional engineering challenges and has discovered intriguing design principles, which have not yet been seen in conventional engineering. In this thesis, we present new and fundamental work on Evolvable Hardware motivated by the insight that Evolvable Hardware needs to compensate for events with different change rates. To solve the challenge of different adaptation speeds, we propose a unified adaptation approach based on multi-objective evolution, evolving and propagating candidate solutions that are diverse in objectives that may experience radical changes. Focusing on algorithmic aspects, we enable Cartesian Genetic Programming (CGP) model, which we are using to encode Boolean circuits, for multi-objective optimization by introducing a meaningful recombination operator. We improve the scalability of CGP by objectives scaling, periodization of local- and global-search algorithms, and the automatic acquisition and reuse of subfunctions using age- and cone-based techniques. We validate our methods on the applications of adaptation of hardware classifiers to resource changes, recognition of muscular signals for prosthesis control and optimization of processor caches.