Evolving Rule-Based Models


Book Description

The idea about this book has evolved during the process of its preparation as some of the results have been achieved in parallel with its writing. One reason for this is that in this area of research results are very quickly updated. Another is, possibly, that a strong, unchallenged theoretical basis in this field still does not fully exist. From other hand, the rate of innovation, competition and demand from different branches of industry (from biotech industry to civil and building engineering, from market forecasting to civil aviation, from robotics to emerging e-commerce) is increasingly pressing for more customised solutions based on learning consumers behaviour. A highly interdisciplinary and rapidly innovating field is forming which focus is the design of intelligent, self-adapting systems and machines. It is on the crossroads of control theory, artificial and computational intelligence, different engineering disciplines borrowing heavily from the biology and life sciences. It is often called intelligent control, soft computing or intelligent technology. Some other branches have appeared recently like intelligent agents (which migrated from robotics to different engineering fields), data fusion, knowledge extraction etc., which are inherently related to this field. The core is the attempts to enhance the abilities of the classical control theory in order to have more adequate, flexible, and adaptive models and control algorithms.




Evolving Intelligent Systems


Book Description

From theory to techniques, the first all-in-one resource for EIS There is a clear demand in advanced process industries, defense, and Internet and communication (VoIP) applications for intelligent yet adaptive/evolving systems. Evolving Intelligent Systems is the first self- contained volume that covers this newly established concept in its entirety, from a systematic methodology to case studies to industrial applications. Featuring chapters written by leading world experts, it addresses the progress, trends, and major achievements in this emerging research field, with a strong emphasis on the balance between novel theoretical results and solutions and practical real-life applications. Explains the following fundamental approaches for developing evolving intelligent systems (EIS): the Hierarchical Prioritized Structure the Participatory Learning Paradigm the Evolving Takagi-Sugeno fuzzy systems (eTS+) the evolving clustering algorithm that stems from the well-known Gustafson-Kessel offline clustering algorithm Emphasizes the importance and increased interest in online processing of data streams Outlines the general strategy of using the fuzzy dynamic clustering as a foundation for evolvable information granulation Presents a methodology for developing robust and interpretable evolving fuzzy rule-based systems Introduces an integrated approach to incremental (real-time) feature extraction and classification Proposes a study on the stability of evolving neuro-fuzzy recurrent networks Details methodologies for evolving clustering and classification Reveals different applications of EIS to address real problems in areas of: evolving inferential sensors in chemical and petrochemical industry learning and recognition in robotics Features downloadable software resources Evolving Intelligent Systems is the one-stop reference guide for both theoretical and practical issues for computer scientists, engineers, researchers, applied mathematicians, machine learning and data mining experts, graduate students, and professionals.




Advances in Computational Intelligence Systems


Book Description

The book is a timely report on advanced methods and applications of computational intelligence systems. It covers a long list of interconnected research areas, such as fuzzy systems, neural networks, evolutionary computation, evolving systems and machine learning. The individual chapters are based on peer-reviewed contributions presented at the 16th Annual UK Workshop on Computational Intelligence, held on September 7-9, 2016, in Lancaster, UK. The book puts a special emphasis on novels methods and reports on their use in a wide range of applications areas, thus providing both academics and professionals with a comprehensive and timely overview of new trends in computational intelligence.




Fuzzy Information Processing


Book Description

This book constitutes the thoroughly refereed proceedings of the 37th IFSA Conference, NAFIPS 2018, held in Fortaleza, Brazil, in July 2018. The 55 full papers presented were carefully reviewed and selected from 73 submissions. The papers deal with a large spectrum of topics, including theory and applications of fuzzy numbers and sets, fuzzy logic, fuzzy inference systems, fuzzy clustering, fuzzy pattern classification, neuro-fuzzy systems, fuzzy control systems, fuzzy modeling, fuzzy mathematical morphology, fuzzy dynamical systems, time series forecasting, and making decision under uncertainty.




Nature-Inspired Optimization Algorithms for Fuzzy Controlled Servo Systems


Book Description

Nature-inspired Optimization Algorithms for Fuzzy Controlled Servo Systems explains fuzzy control in servo systems in a way that doesn't require any solid mathematical prerequisite. Analysis and design methodologies are covered, along with specific applications to servo systems and representative case studies. The theoretical approaches presented throughout the book are validated by the illustration of digital simulation and real-time experimental results. This book is a great resource for a wide variety of readers, including graduate students, engineers (designers, practitioners and researchers), and everyone who faces challenging control problems.




Computational Intelligence for Knowledge-Based System Design


Book Description

The book constitutes the refereed proceedings of the 13th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, IPMU 2010, held in Dortmund, Germany from June 28 - July 2, 2010. The 77 revised full papers were carefully reviewed and selected from 320 submissions and reflect the richness of research in the field of Computational Intelligence and represent developments on topics as: machine learning, data mining, pattern recognition, uncertainty handling, aggregation and fusion of information as well as logic and knowledge processing.




Applications and Science in Soft Computing


Book Description

Soft computing techniques have reached a significant level of recognition and - ceptance from both the academic and industrial communities. The papers collected in this volume illustrate the depth of the current theoretical research trends and the breadth of the application areas in which soft computing methods are making c- tributions. This volume consists of forty six selected papers presented at the Fourth Inter- tional Conference on Recent Advances in Soft Computing, which was held in N- th th tingham, United Kingdom on 12 and 13 December 2002 at Nottingham Trent University. This volume is organized in five parts. The first four parts address mainly the f- damental and theoretical advances in soft computing, namely Artificial Neural Networks, Evolutionary Computing, Fuzzy Systems and Hybrid Systems. The fifth part of this volume presents papers that deal with practical issues and ind- trial applications of soft computing techniques. We would like to express our sincere gratitude to all the authors who submitted contributions for inclusion. We are also indebted to Janusz Kacprzyk for his - vices related to this volume. We hope you find the volume an interesting refl- tion of current theoretical and application based soft computing research.




Evolving Fuzzy Systems - Methodologies, Advanced Concepts and Applications


Book Description

In today’s real-world applications, there is an increasing demand of integrating new information and knowledge on-demand into model building processes to account for changing system dynamics, new operating conditions, varying human behaviors or environmental influences. Evolving fuzzy systems (EFS) are a powerful tool to cope with this requirement, as they are able to automatically adapt parameters, expand their structure and extend their memory on-the-fly, allowing on-line/real-time modeling. This book comprises several evolving fuzzy systems approaches which have emerged during the last decade and highlights the most important incremental learning methods used. The second part is dedicated to advanced concepts for increasing performance, robustness, process-safety and reliability, for enhancing user-friendliness and enlarging the field of applicability of EFS and for improving the interpretability and understandability of the evolved models. The third part underlines the usefulness and necessity of evolving fuzzy systems in several online real-world application scenarios, provides an outline of potential future applications and raises open problems and new challenges for the next generation evolving systems, including human-inspired evolving machines. The book includes basic principles, concepts, algorithms and theoretic results underlined by illustrations. It is dedicated to researchers from the field of fuzzy systems, machine learning, data mining and system identification as well as engineers and technicians who apply data-driven modeling techniques in real-world systems.







Simulated Evolution and Learning


Book Description

This book constitutes the refereed proceedings of the 11th International Conference on Simulated Evolution and Learning, SEAL 2017, held in Shenzhen, China, in November 2017. The 85 papers presented in this volume were carefully reviewed and selected from 145 submissions. They were organized in topical sections named: evolutionary optimisation; evolutionary multiobjective optimisation; evolutionary machine learning; theoretical developments; feature selection and dimensionality reduction; dynamic and uncertain environments; real-world applications; adaptive systems; and swarm intelligence.