Recent Advances in Example-Based Machine Translation


Book Description

Recent Advances in Example-Based Machine Translation is of relevance to researchers and program developers in the field of Machine Translation and especially Example-Based Machine Translation, bilingual text processing and cross-linguistic information retrieval. It is also of interest to translation technologists and localisation professionals. Recent Advances in Example-Based Machine Translation fills a void, because it is the first book to tackle the issue of EBMT in depth. It gives a state-of-the-art overview of EBMT techniques and provides a coherent structure in which all aspects of EBMT are embedded. Its contributions are written by long-standing researchers in the field of MT in general, and EBMT in particular. This book can be used in graduate-level courses in machine translation and statistical NLP.




Recent Advances in Example-Based Machine Translation


Book Description

Recent Advances in Example-Based Machine Translation is of relevance to researchers and program developers in the field of Machine Translation and especially Example-Based Machine Translation, bilingual text processing and cross-linguistic information retrieval. It is also of interest to translation technologists and localisation professionals. Recent Advances in Example-Based Machine Translation fills a void, because it is the first book to tackle the issue of EBMT in depth. It gives a state-of-the-art overview of EBMT techniques and provides a coherent structure in which all aspects of EBMT are embedded. Its contributions are written by long-standing researchers in the field of MT in general, and EBMT in particular. This book can be used in graduate-level courses in machine translation and statistical NLP.




Syntax-based Statistical Machine Translation


Book Description

This unique book provides a comprehensive introduction to the most popular syntax-based statistical machine translation models, filling a gap in the current literature for researchers and developers in human language technologies. While phrase-based models have previously dominated the field, syntax-based approaches have proved a popular alternative, as they elegantly solve many of the shortcomings of phrase-based models. The heart of this book is a detailed introduction to decoding for syntax-based models. The book begins with an overview of synchronous-context free grammar (SCFG) and synchronous tree-substitution grammar (STSG) along with their associated statistical models. It also describes how three popular instantiations (Hiero, SAMT, and GHKM) are learned from parallel corpora. It introduces and details hypergraphs and associated general algorithms, as well as algorithms for decoding with both tree and string input. Special attention is given to efficiency, including search approximations such as beam search and cube pruning, data structures, and parsing algorithms. The book consistently highlights the strengths (and limitations) of syntax-based approaches, including their ability to generalize phrase-based translation units, their modeling of specific linguistic phenomena, and their function of structuring the search space.




Machine Translation


Book Description

A concise, nontechnical overview of the development of machine translation, including the different approaches, evaluation issues, and major players in the industry. The dream of a universal translation device goes back many decades, long before Douglas Adams's fictional Babel fish provided this service in The Hitchhiker's Guide to the Galaxy. Since the advent of computers, research has focused on the design of digital machine translation tools—computer programs capable of automatically translating a text from a source language to a target language. This has become one of the most fundamental tasks of artificial intelligence. This volume in the MIT Press Essential Knowledge series offers a concise, nontechnical overview of the development of machine translation, including the different approaches, evaluation issues, and market potential. The main approaches are presented from a largely historical perspective and in an intuitive manner, allowing the reader to understand the main principles without knowing the mathematical details. The book begins by discussing problems that must be solved during the development of a machine translation system and offering a brief overview of the evolution of the field. It then takes up the history of machine translation in more detail, describing its pre-digital beginnings, rule-based approaches, the 1966 ALPAC (Automatic Language Processing Advisory Committee) report and its consequences, the advent of parallel corpora, the example-based paradigm, the statistical paradigm, the segment-based approach, the introduction of more linguistic knowledge into the systems, and the latest approaches based on deep learning. Finally, it considers evaluation challenges and the commercial status of the field, including activities by such major players as Google and Systran.




Example-based Machine Translation


Book Description

Seminar paper from the year 2007 in the subject English Language and Literature Studies - Linguistics, grade: 2, University of Marburg (Fremdsprachliche Philologien), course: Human Language Technologies, language: English, abstract: Machine Translation has more and more become an essential method to assist or even replace human translators. The necessity of developing useful computer software that fulfils this task has grown because in the age of the internet people want to get their information in their own language. Which approach is appropriate and which technique works well in order to cope with this challenge? This paper will focus on Example-based Machine Translation (EBMT), an approach that does not correspond with traditional translation systems but has the advantage of requiring only little knowledge and thus being usable in a great number of languages.




Challenges for Arabic Machine Translation


Book Description

This book is the first volume that focuses on the specific challenges of machine translation with Arabic either as source or target language. It nicely fills a gap in the literature by covering approaches that belong to the three major paradigms of machine translation: Example-based, statistical and knowledge-based. It provides broad but rigorous coverage of the methods for incorporating linguistic knowledge into empirical MT. The book brings together original and extended contributions from a group of distinguished researchers from both academia and industry. It is a welcome and much-needed repository of important aspects in Arabic Machine Translation such as morphological analysis and syntactic reordering, both central to reducing the distance between Arabic and other languages. Most of the proposed techniques are also applicable to machine translation of Semitic languages other than Arabic, as well as translation of other languages with a complex morphology.




Recent Advances in Example-Based Machine Translation


Book Description

Recent Advances in Example-Based Machine Translation is of relevance to researchers and program developers in the field of Machine Translation and especially Example-Based Machine Translation, bilingual text processing and cross-linguistic information retrieval. It is also of interest to translation technologists and localisation professionals. Recent Advances in Example-Based Machine Translation fills a void, because it is the first book to tackle the issue of EBMT in depth. It gives a state-of-the-art overview of EBMT techniques and provides a coherent structure in which all aspects of EBMT are embedded. Its contributions are written by long-standing researchers in the field of MT in general, and EBMT in particular. This book can be used in graduate-level courses in machine translation and statistical NLP.




Readings in Machine Translation


Book Description

The field of machine translation (MT) - the automation of translation between human languages - has existed for more than 50 years. MT helped to usher in the field of computational linguistics and has influenced methods and applications in knowledge representation, information theory, and mathematical statistics.




Machine Translation


Book Description

This book compares and contrasts the principles and practices of rule-based machine translation (RBMT), statistical machine translation (SMT), and example-based machine translation (EBMT). Presenting numerous examples, the text introduces language divergence as the fundamental challenge to machine translation, emphasizes and works out word alignment, explores IBM models of machine translation, covers the mathematics of phrase-based SMT, provides complete walk-throughs of the working of interlingua-based and transfer-based RBMT, and analyzes EBMT, showing how translation parts can be extracted and recombined to automatically translate a new input.




Progress in Machine Translation


Book Description